Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải phương trình \(\frac{29-x}{21}\)+\(\frac{27-x}{3}\)+\(\frac{25-x}{25}\)+\(\frac{21-x}{29}\)= -5
= 25/49 *( 21/29-7/29) +24/49 * 15/29
=25/49*14/29+ 24/49*15/29
BẠN TỰ LÀM TIẾP NHA
study well
\(\frac{25}{49}.\frac{21}{29}-\frac{25}{49}.\frac{7}{29}+\frac{24}{49}.\frac{15}{29}\)
\(=\frac{25}{49}.\left(\frac{21}{29}-\frac{7}{29}\right)+\frac{24}{49}.\frac{15}{29}\)
\(=\frac{25}{49}.\frac{14}{29}+\frac{24}{49}.\frac{15}{29}\)
\(=\left(\frac{25}{49}+\frac{24}{49}\right).\left(\frac{14}{29}+\frac{15}{29}\right)\)
\(=1.1=1\)
\(\frac{2}{20}+\frac{2}{30}+...+\frac{2}{Xx\left(X+1\right)}=\frac{2}{5}\)
2 . \(\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{Xx\left(X+1\right)}\right)=\frac{2}{5}\)
\(\frac{1}{4.5}+\frac{1}{5.6}+..+\frac{1}{Xx\left(X+1\right)}=\frac{2}{5}:2=\frac{1}{5}\)
\(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{5}\)
\(\frac{1}{4}-\frac{1}{x+1}=\frac{1}{5}\)
\(\frac{1}{x+1}=\frac{1}{4}-\frac{1}{5}=\frac{1}{20}\)
=> x + 1 = 20
=> x = 19
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{5}\)
\(\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{5}\)
\(2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{5}\)
\(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{5}:2\)
\(\frac{1}{4}-\frac{1}{x+1}=\frac{1}{5}\)
\(\frac{1}{x+1}=\frac{1}{4}-\frac{1}{5}=\frac{1}{20}\)
=> x + 1 = 20
=> x = 20 - 1
=> x = 19
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}\)
\(=\left(\frac{3}{29}\cdot\frac{29}{3}\right)-\left(\frac{1}{5}\cdot\frac{29}{3}\right)\)
\(=1-\frac{29}{15}\)
\(=\frac{-14}{15}\)
b)\(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
=\(=\frac{16\cdot\left(-5\right)\cdot54\cdot56}{15\cdot14\cdot24\cdot21}\)
\(=\frac{2^4\cdot\left(-5\right)\cdot2\cdot3^3\cdot2^3\cdot7}{3\cdot5\cdot7\cdot2\cdot2^3\cdot3\cdot7}\)
\(=2^4\)
c)\(\frac{37}{7}\cdot\frac{8}{11}+\frac{37}{7}\cdot\frac{5}{11}-\frac{37}{7}\cdot\frac{2}{11}\)
\(=\frac{37}{7}\cdot\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)
\(=\frac{37}{7}\cdot1\)
\(=\frac{37}{7}\)
Đúng nhớ k nhen!
a,\(\frac{21}{25}.\frac{11}{9}.\frac{5}{7}=\frac{21.11.5}{25.9.7}=\frac{3.7.11.5}{5^2.3^2.7}=\frac{11}{5.3}=\frac{11}{15}\)
b,\(\frac{5}{23}.\frac{17}{26}+\frac{5}{23}.\frac{9}{26}=\frac{5}{23}.\left(\frac{17}{26}+\frac{9}{26}\right)=\frac{5}{23}.1=\frac{5}{23}\)
c, \(\left(\frac{3}{29}-\frac{1}{5}\right).\frac{29}{3}=\frac{3}{29}.\frac{29}{3}-\frac{1}{5}.\frac{29}{3}=1-\frac{29}{15}=-\frac{14}{15}\)
a , \(\frac{21}{25}\times\frac{11}{9}\times\frac{5}{7}\)
\(=\frac{21\times11\times5}{25\times9\times7}\)
\(=\frac{3\times7\times11\times5}{5\times5\times3\times3\times7}\)
\(=\frac{11}{5\times3}\)
\(=\frac{11}{15}\)
b , \(\frac{5}{23}\times\frac{17}{26}+\frac{5}{23}\times\frac{9}{26}\)
\(=\frac{5}{23}\times\left(\frac{17}{26}+\frac{9}{26}\right)\)
\(=\frac{5}{23}\times\frac{26}{26}\)
\(=\frac{5}{23}\times1\)
\(=\frac{5}{23}\)
c , \(\left(\frac{3}{29}-\frac{1}{5}\right)\times\frac{29}{3}\)
\(=\frac{3}{29}\times\frac{29}{3}-\frac{1}{5}\times\frac{29}{3}\)
\(=1-\frac{29}{15}\)
a, \(\frac{-3}{5}+\frac{7}{21}+\frac{-4}{5}+\frac{7}{5}\)
\(=\left(\frac{-3}{5}+\frac{-4}{5}+\frac{7}{5}\right)+\frac{7}{21}\)
\(=0+\frac{7}{21}\)
\(=\frac{7}{21}\)
\(=\frac{1}{3}\)
b, \(\frac{8}{9}+\frac{1}{9}.\frac{7}{9}+\frac{1}{9}.\frac{2}{9}\)
\(=\frac{8}{9}+\frac{1}{9}.\left(\frac{7}{9}+\frac{2}{9}\right)\)
\(=\frac{8}{9}+\frac{1}{9}.1\)
\(=\frac{8}{9}+\frac{1}{9}\)
\(=1\)
a) \(\frac{-3}{5}\)+\(\frac{7}{21}\)+\(\frac{-4}{5}\)+\(\frac{7}{5}\)
=(\(\frac{-3}{5}\)+\(\frac{-4}{5}\)+\(\frac{7}{5}\)) +\(\frac{7}{21}\)
= 0+
Ta có thể thấy:
\(\frac{11}{29};\frac{9}{17};\frac{10}{19}< \frac{2}{3}\)
\(\Rightarrow\frac{11}{29}+\frac{9}{17}+\frac{10}{19}< 3\times\frac{2}{3}=2\)
Chúc bn hok tốt