Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) x² - 3 = 22
=> x² = 25
=> x = + 5
Vậy x = + 5
b) 2x³ + 5 = -11
2x³ = -16
x³ = -8
x = -2
Vậy x = -2
c) ( x + 2 )² = 81
=> x + 2 = 9
=> x = 7
Vậy x = 7
d) ( 2x + 1 )² = 25
=> 2x + 1 = 5
=> 2x = 4
=> x = 2
Vậy x = 2
e) 5x + 2 = 625
5x = 623 ( vô lí )
g) ( 2x - 3 )² = 36.
=> 2x - 3 = 6
=> 2x = 9
=> x = 4,5
Vậy x = 4,5
h) ( 2x - 1 )³ = -8
=> 2x - 1 = -2
=> 2x = -1
=> x = -1/2
Vậy x = -1/2
i) ( x - 1 )x + 2 = ( x - 1 )x + 6
=> [ (x - 1 )x - ( x - 1 )x ] = 6 - 2
=> 0 = 4 ( vô lí )
Vậy x thuộc rỗng.
k) x² + x = 0
=> x( x + 1 ) = 0
=> x = 0 hoặc x + 1 = 0
=> x = 0 hoặc x = -1
Vậy x = 0 hoặc x = -1
2 . 1/8 = 2/2.4 + 2/4.6 + ...+ 2/((2x -2).2x)
1/4 = 4-2/2.4 + 6-4/4.6 + ... + 2x-(2x-2)/(2x-2)+2x
1/4 = 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2x -2 - 1/2x
1/4 = 1/2 - 1/2x
1/4 = 2x-2/2.2x
Tự làm tiếp nhé
Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2x}\right)\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2x}\right)\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Lời giải:
$2^x+2^{x+1}+2^{x+2}+....+2^{x+2020}=2^{x+2024}-8$
$2^x(1+2+2^2+...+2^{2020})=2^{x+2024}-8$
$2^x(2+2^2+2^3+...+2^{2021})=2^{x+2025}-16$
$\Rightarrow 2^x(2+2^2+2^3+...+2^{2021})- (2^x(1+2+2^2+...+2^{2020}))=2^{x+2025}-16-(2^{x+2024}-8)$
$\Rightarrow 2^x(2^{2021}-1)=2^{x+2025}-2^{x+2024}-8$
$\Rightarrow 2^x(2^{2021}-1)=2^{x+2024}(2-1)-8$
$\Rightarrow 2^{x+2021}-2^x=2^{3+2021}-2^3$
$\Rightarrow x=3$
a: =>1/3:x=3/5-2/3=9/15-10/15=-1/15
=>x=-1/3:1/15=5
b: \(\Leftrightarrow x\cdot\dfrac{2}{3}-3=\dfrac{2}{5}\cdot\left(-10\right)=-4\)
=>x*2/3=-1
=>x=-3/2
c: =>2x+1=4 hoặc 2x+1=-4
=>x=3/2 hoặc x=-5/2
h: =>x-3=4
=>x=7
g: =>2x-1=3
=>2x=4
=>x=2
f: \(\Leftrightarrow x\cdot\left(\dfrac{3}{2}-\dfrac{7}{3}\right)=\dfrac{3}{2}-\dfrac{2}{3}\)
=>x*-5/6=5/6
=>x=-1
d: =>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>x=-1 hoặc x=2
\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)
\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)
\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)
Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)
\(\Rightarrow S+2^x-1=2^{x+2016}-1\)
\(\Rightarrow S=2^{x+2016}-2^x\)
\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left[\left(2x-2\right).2x\right]}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{8}:\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(2\left(\dfrac{1}{2}-2x\right)^2=8\)
\(\Rightarrow\left(\dfrac{1}{2}-2x\right)^2=4=2^2\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-2x=2\\\dfrac{1}{2}-2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-2\\2x=\dfrac{1}{2}+2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-\dfrac{3}{2}\\2x=\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{5}{4}\end{matrix}\right.\)