K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

Ta gọi tổng này là A

Ta có:A=2^100.7.11+3^81.13.14

A=2^100.7.11+3^81.13.2.7

A=7.(2^100.11+3^81.13.2) chia hết cho 7 mà A>7

=>A là hợp số

5 tháng 12 2017

Ta gọi tổng này là A

 Ta có : A=2^100.7.11+3^81.12.14

 A=2^100.7.11+3^81.13.2.7

 A=7.(2^100.11+3^81.13.2) chia hết cho 7 mà A>7

 Vậy A là hợp số

17 tháng 1 2016

hợp số

17 tháng 1 2016

hợp số

21 tháng 10 2018

hợp số \(⋮3\)

21 tháng 10 2018

hợp số cậu nhé
_Số nguyên tố là số lớn hơn 1,chỉ có 2 ước là 1 và chính nó
_Hợp số là số lớn hơn 1,có nhiều hơn 2 ước

27 tháng 9 2018

Vì \(\hept{\begin{cases}2.3.5.11⋮3\\13.17.19.21⋮3\end{cases}\Rightarrow2.3.5.11+13.17.19.21⋮3}\)

Mà \(2.3.5.11+13.17.19.21>3\)

=> A là hợp số

31 tháng 7 2016

là hợp số vì n2 và 2006 có hơn 2 ước.

31 tháng 7 2016

Ta có : n là số nguyên tố > 3 

         => n2 = không chia hết cho 3

         => n2 = 3k + 1

vậy 3k+1+2006 = 3k + 2007

   ta có: 3k chia hết cho 3

            2007 chia hết cho 3 nên n2+2006 là hợp số

  

10 tháng 1 2016

Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:

Với n = 3k +1 thì:

 n^2 + 2006 = (3k+1). (3k+1) +2006

                  = 9.k.k + 3k+3k+1 + 2006

                  = 3.(3.k.k +1+1)+1+2006

                  = 3.(3.k.k +1+1) + 2007 chia hết cho 3

=> Với n = 3k+1 thì n^2 + 2006 là hợp số 

Với n= 3k+2 thì:

(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006

                             =3(3.k.k + 2k +2k)+4+2006

                             =3(3.k.k +2k+2k)+2010 chia hết cho 3

=>Với n = 3k+2 thì n^2 +2006 là hợp số

Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số

(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)

 

                   =

 

 

10 tháng 1 2016

TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007 

3k(3k + 2)  chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3   (1)

TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010

3k(3k + 4)  chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3  (2)

Từ (1) và (2) => n2 + 2006 là hợp số

14 tháng 12 2015

a)Xét P =5k ( vì P là số nguyên tố)

 P+2=7 ; P+6 = 11 ; P+8 =13 ; P +14=19 (T/m)

Xét P =5k+1( k thuộc N)

P+14=5k+1+14 = 5k+15 chia hết cho 5(ko t/m)

Xét P=5k+2 

P + 8=5k+10 chia hêt cho 5 ( ko t/m)

Xét P=5k+3

P+2=5k+3=5k+5 chia hết cho 5 ( ko t/m)

Xét  P = 5k+4

P+6 =5k+4+6=5k+10 chia hết cho 5 ( ko t/m)

Vậy P = 5

 bài a này mik còn có cách giải khác nhưng dài hơn . 

14 tháng 12 2015

b) P là số nguyên tố > 3 nên  P có dạng : 3k+1 và 3k+2

TH1 : p= 3k+1 .Ta có:

2p+1 = 2(3k+1) = 6k+2+1 = 6k+3 chia hết cho 3 nên là hợp số ( loại)

TH2:p=3k+2 . Ta có:

2p+1 = 2(3k+2) = 6k+4+1=6k+5 ( là số nguyên tố theo đề bài ta chọn TH này)

Vậy 4p+1 = 4(3k+2)+1=12k+8+1 = 12k+9 . ta thấy 12k và 9 đều chia hết cho 3 nên(12k+9) là hợp số 

Do đó 4p+1 là hợp số ( đpcm)

mik làm bài a và b rùi,tick nhé

4 tháng 11 2015

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 ( k thuộc N)

nếu p = 3k+1 thì p+8 = (3k+1)+8 = 3k+9=3.(k+3) chia hết cho 3 (loại)

nếu p = 3k+2 thì p+8 = (3k+2)+9 = 3k +10 có thể là số nguyên tố (chọn)

khi đó p+10= (3k+2)+100=3k+102=3.(k+34) chia hết cho 3

Vậy là hợp số

26 tháng 3 2016

Vì P > 3 nên P = 3k + 1 hoặc P = 3k + 2.

+Với P = 3k + 1 thì P + 8 = 3k + 1 + 8 = 3k + 9 = 3.( k + 3) chia hết cho 3.

       Vì P + 8 vhia hết cho 3 mà P + 8 > 3 nên P + 8 là hợp số ( loại ) 

+ Với P = 3k + 2 thì P + 100 = 3k + 2 +100 = 3k + 102 =3. (k + 34) chia hết cho 3.

      Vì P + 100 chia hết cho 3 mà P + 100 > 3 nên P + 100 là hợp số.

         Vậy với P và P + 8 là số nguyên tố ( P > 3) thì P + 100 là hợp số.