K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

Đặt S = 2100 - 299 - ... - 22 - 2 - 1

S = 2100 - ( 299 + 298 + ... + 22 + 2 + 1 )

Đặt N =  299 + 298 + ... + 22 + 2 + 1

2N = 2 (  299 + 298 + ... + 22 + 2 + 1)

2N = 2100 + 299 + ... + 23 + 22 + 2 

2N - N = ( 2100 + 299 + ... + 23 + 22 + 2 ) - (  299 + 298 + ... + 22 + 2 + 1)

N = 2100  -1 

Thay N vào S ta có : 

S = 2100 - ( 2100 - 1 ) 

S= 2100 - 2100 + 1 

S = 1 

Vậy S = 1

Học tốt

#Dương

23 tháng 1 2016

bài 1 :

a) S1=( 1 + 3 - 5 - 7 )+(9+11-13-15)+...+(393+395-397-399)

S1=(-8)+(-8)+...+(-8)

S1=(-8)*199

S1=-1592

b)S2=(1-2-3+4)+( 5 - 6 - 7 +8)+...+( 97 - 98 - 99 + 100)

S2=0+0+...+0

S2=0*100

S2=0

 phần c và d tương tự nhé

BÀI 2

c)<=>2(x-1)+4 chia hết x-3

=>8 chia hết x-3

=>x-3\(\in\){-1,-2,-4,-8,1,2,4,8}

=>x\(\in\){2,1,-1,-5,4,5,7,11}

 

23 tháng 1 2016

hoắt tờ phắc dài thế

tôi làm từng phần 1 nhé

13 tháng 11 2014

Ko có số nào

 

 

4 tháng 2 2016

 S = 1-3+32+...+398-399                                                                                                                                                                               =- 2+32 (1-3) + ... +398 (1-3)                                                                                                                         =-2-2.32-2.34 - ... -2.398                                                                                                                                                                        = -2(1+32+34+...+398)    => 32S =9S =-2( 32 + 34 +3+...3100)                                                                   => 9S - S = -2 (32 + 3+36+...+3100 )+2(1+32+34+...+398 )                                                                           =>8S=-2(3100 -1)                                                                                                                                 =>S= -2(3100 -1) / -8  = 3100 -1/-4                                                                                                                                     

22 tháng 10 2015

a)Ta có:S1=5+52+53+…+599+5100

=>5.S1=52+53+54+…+5100+5101

=>5.S1-S1=52+53+54+…+5100+5101-5-52-53-…-599-5100

=>4.S1=5101-5

=>\(S_1=\frac{5^{101}-5}{4}\)

b)S2=2+22+23+…+299+2100

=>2.S2=22+23+24+…+2100+2101

=>2.S2-S2=22+23+24+…+2100+2101-2-22-23-…-299-2100

=>S2=2101-2

22 tháng 10 2015

2S1=52+53+54+....+5100+5101

2S1-s1=5101-5

S1=5101-5

b) S2=2101-2

25 tháng 11 2018

s1=1+2+3+...+99

s1=99+98+...+1

2s1=100+100+....+100

2s1=100.99

s1=100.99:2=4950(mấy bài sau lam tương tự nha)

25 tháng 11 2018

4+4^2+4^3+...+4^90 chia hết cho 21

=(4+4^2+4^3)+...+(4^88+4^89+4^90)

=84.1+(4^4+4^5+4^6+...+4^90)

vì 84 chia hết cho 21 suy ra tổng trên chia hét cho 21         (ĐPCM)

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)