Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x.(x-1)=0
\(\Rightarrow\)x=0 hoặc x-1=0
\(\Rightarrow\)x=0+1
\(\Rightarrow\)x=1
vậy x=1 hoặc x=0
b) -x.(x+3)=0
\(\Rightarrow\)-x = 0 hoặc x+3 = 0
\(\Rightarrow\)x= 0-3
\(\Rightarrow\)x=-3
vậy x=0 hoặc x=-3
c) (2x-4).(x+2)=0
(2x-4)= 0
2x=0+4
2x=4
x=4:2
x=2
hoặc (x+2)=0
x= 0-2
x=-2
vậy x=2 hoặc x=-2
d) (3-x).|x+5|=0
3-x = 0
x= 3-0
x=3
hoặc |x+5|=0
x+ 5=0
x=0-5
x=-5
vậy x=3 hoặc x=-5
e) (|x|+1).( 4-2x) = 0
(|x|+1) =0
|x|= 0-1
|x|=-1
hoặc( 4-2x) = 0
2x=4-0
2x=4
x=4:2
x=2
g) x2+5x=0
x2=0
x=0
hoặc 5x=0
x= 0: 5
x=0
vậy x=0
2)
a) (x+3).(y-5)= 7
(x+3)và (y-5)\(\in\)Ư(7)=\(\left\{1;-1;7;-7\right\}\)
x+3 | 1 | 7 | -1 | -7 |
y-5 | 7 | 1 | -7 | -1 |
x | -2 | 4 | -4 | -10 |
y | 12 | 6 | 2 | 4 |
b) xy + 3x - 2y= 11
x( y+3) -2y=11
x(y-3)- 2( y+3) +6 = 11
( y+3) ( x-2) = 5
vì x,y thuộc Z \(\Leftrightarrow\)y+3 và x-2 \(\in\)Z
do đó y+3 và x-2 \(\in\)Ư ( 5)= \(\left\{1;5;-1;-5\right\}\)
y+3 | 1 | 5 | -1 | -5 |
x-2 | 5 | 1 | -5 | -1 |
y | -2 | 2 | -4 | -8 |
x | 7 | 3 | -3 | 1 |
\(\in\)\(\in\)
c) xy + 3x - 7y= 21
x( y+3) -7y= 21
x( y+3) - 7( y+3)+21= 21
(y+3)( x-7) =0
y+3 | 0 | |
x-7 | 0 | |
y | -3 | |
x | 7 |
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
a) \(\left(x-5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\left\{\pm3\right\}\end{cases}}\)
Vậy........
b) \(x\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy......
\(a.\Leftrightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}\)Vậy \(x=-3;0\)
\(b.\Leftrightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}\). Vậy \(x=2;5\)
\(c.\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\loại\end{cases}}\).vì \(x^2+1\ne0\) Vậy \(x=1\)
a) x.(x+3)=0
=>x hoac x+3 = 0
=>x=0 hoac -3
b)(x-2).(5-x)=0
=> x-2 hoac 5-x =0
=> x=2 hoac 5
c)(x-1).(x^2+1)=0
=>x-1 hoac x^2+1 =0
=> x=1
k nha
a)Ta có:
\(x\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b)Ta có:
\(\left(x-2\right)\left(5-x\right)=0\Rightarrow\left[{}\begin{matrix}x-2=0\\5-x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
c)Ta có:
\(\left(x+1\right)\left(x^2+1\right)=0\Rightarrow\left[{}\begin{matrix}x+1=0\\x^2+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\\varnothing\end{matrix}\right.\)
Vậy \(x=-1\)