K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

\(20\left(x-2\right)^2-5\left(x+1\right)^2+48\left(x-2\right)\left(x+1\right)=0\)

<=> \(63x^2-138x-21=0\)

<=> \(3\left(21x^2-46x-7\right)=0\)

<=> \(3\left(21x^2+3x-49x-7\right)=0\)

<=> \(3\left[3x\left(7x+1\right)-7\left(7x+1\right)\right]=0\)

<=> \(3\left(7x+1\right)\left(3x-7\right)=0\)

<=> \(\orbr{\begin{cases}7x+1=0\\3x-7=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=\frac{3}{7}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=\frac{3}{7}\end{cases}}\)

24 tháng 7 2019

\(20\left(x-2\right)^2-5\left(x+1\right)^2+48\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow63x^2-138x-21=0\)

\(\Leftrightarrow3\left(7x+1\right)\left(3x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{7}\\x=\frac{7}{3}\end{cases}}\)

Tham khảo:

27 tháng 2 2021

`20((x-2)/(x+1))^2-5((x+2)/(x-1))^2+48(x^2-4)/(x^2-1)=0(x ne +-1)`

Đặt `(x-2)/(x+1)=a,(x+2)/(x-1)=b`

`pt<=>20a^2-5b^2+48ab=0`

`<=>20a^2+48ab-5b^2=0`

`<=>20a^2-2ab+50ab-5b^2=0`

`<=>2a(a-10b)+5b(10a-b)=0`

`<=>(a-10b)(2a+5b)=0`

Đến đây dễ rồi bạn tự giải tiếp.

27 tháng 2 2021

ĐKXĐ: x \(\ne\)\(\pm\)1

Ta có: \(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\cdot\dfrac{x^2-4}{x^2-1}=0\)

Đặt: \(\dfrac{x-2}{x+1}=a\) ; \(\dfrac{x+2}{x-1}=b\)

=> ab = \(\dfrac{x^2-4}{x^2-1}\)

Do đó, ta có pt mới: 20a2 - 5b2 + 48ab = 0

<=> 20a2 + 50ab - 2ab - 5b2 = 0

<=> (10a - b)(2a + 5b) = 0

<=> \(\left[{}\begin{matrix}10a=b\\2a=-5b\end{matrix}\right.\)

TH1: 10a = b => \(10\cdot\dfrac{x-2}{x+1}=\dfrac{x+2}{x-1}\)

<=> 10(x - 2)(x - 1) = (x + 2)(x + 1)

<=> 10x2 - 30x + 20 = x2 + 3x + 2

<=> 9x2 - 33x + 18 = 0

<=> 9x2 - 27x - 6x + 18 = 0

<=> (9x - 6)(x - 3) = 0

<=> \(\left[{}\begin{matrix}x=3\\x=\dfrac{2}{3}\end{matrix}\right.\)(tm)

TH2: \(2a=-5b\)=> \(2\cdot\dfrac{x-2}{x+1}=-5\cdot\dfrac{x+2}{x-1}\)

=> (2x - 4)(x - 1) = (-5x - 10)(x + 1)

<=> 2x2 - 6x + 4 = -5x2 - 15x - 10

<=> 7x2 + 9x + 14 = 0

=> pt vn

5 tháng 2 2016

<=> 20(x - 2)/(x - 1) - 5(x + 2)²/(x- 1)² + 48(x² - 4) / (x-1)(x+1) = 0 
Điều kiện : 
{ x- 1 # 0 
{ x+1 # 0 

{ x # 1 
{ x # -1 

=> 20(x-2)(x+1)(x-1) - 5(x+2)²(x + 1) + 48(x² - 4)(x - 1) = 0 
<=> 20(x-2)(x² - 1) - 5(x² + 4x+4)(x + 1) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + x² + 4x² + 4x + 4x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + 5x² + 8x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20x^3 - 20x - 40x² + 40 - 5x^3 - 25x² - 40x - 20 + 48x^3 - 48x² - 192x + 192 = 0 
<=> 63x^3 - 113x² - 252x + 212 = 0 

Ta có 
Δ = b² - 3ac = (-113)² - 3.63.(-252) = 60397 
k = 9abc - 2b^3 - 27a²d / 2√|Δ|^3 = -0,1241 

Vì Δ > 0 và |k| < 1 nên pt có 3 nghiệm 

x = 2√Δ.cos(arccos(k)/3 ) - b / 3a = 2,794 
x = 2√Δ.cos(arccos(k) + 2r/3 ) - b / 3a = -1,706 
x = 2√Δ.cos(arccos(k) - 2r/3 ) - b / 3a = 0,706

nha

Nguyễn Vũ Dũng mấy cái kí hiệu ở cuối là sao bạn? 

5 tháng 2 2016

<=> 20(x - 2)/(x - 1) - 5(x + 2)²/(x- 1)² + 48(x² - 4) / (x-1)(x+1) = 0 
Điều kiện : 
{ x- 1 # 0 
{ x+1 # 0 

{ x # 1 
{ x # -1 

=> 20(x-2)(x+1)(x-1) - 5(x+2)²(x + 1) + 48(x² - 4)(x - 1) = 0 
<=> 20(x-2)(x² - 1) - 5(x² + 4x+4)(x + 1) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + x² + 4x² + 4x + 4x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + 5x² + 8x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20x^3 - 20x - 40x² + 40 - 5x^3 - 25x² - 40x - 20 + 48x^3 - 48x² - 192x + 192 = 0 
<=> 63x^3 - 113x² - 252x + 212 = 0 

Ta có 
Δ = b² - 3ac = (-113)² - 3.63.(-252) = 60397 
k = 9abc - 2b^3 - 27a²d / 2√|Δ|^3 = -0,1241 

Vì Δ > 0 và |k| < 1 nên pt có 3 nghiệm 

x = 2√Δ.cos(arccos(k)/3 ) - b / 3a = 2,794 
x = 2√Δ.cos(arccos(k) + 2r/3 ) - b / 3a = -1,706 
x = 2√Δ.cos(arccos(k) - 2r/3 ) - b / 3a = 0,706

5 tháng 2 2016

c) 20(x - 2)/(x - 1) - 5(x + 2)²/(x- 1)² + 48(x² - 4)/(x² - 1) = 0 
<=> 20(x - 2)/(x - 1) - 5(x + 2)²/(x- 1)² + 48(x² - 4) / (x-1)(x+1) = 0 
Điều kiện : 
{ x- 1 # 0 
{ x+1 # 0 

{ x # 1 
{ x # -1 

=> 20(x-2)(x+1)(x-1) - 5(x+2)²(x + 1) + 48(x² - 4)(x - 1) = 0 
<=> 20(x-2)(x² - 1) - 5(x² + 4x+4)(x + 1) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + x² + 4x² + 4x + 4x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + 5x² + 8x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20x^3 - 20x - 40x² + 40 - 5x^3 - 25x² - 40x - 20 + 48x^3 - 48x² - 192x + 192 = 0 
<=> 63x^3 - 113x² - 252x + 212 = 0 

Ta có 
Δ = b² - 3ac = (-113)² - 3.63.(-252) = 60397 
k = 9abc - 2b^3 - 27a²d / 2√|Δ|^3 = -0,1241 

Vì Δ > 0 và |k| < 1 nên pt có 3 nghiệm 

x = 2√Δ.cos(arccos(k)/3 ) - b / 3a = 2,794 
x = 2√Δ.cos(arccos(k) + 2r/3 ) - b / 3a = -1,706 
x = 2√Δ.cos(arccos(k) - 2r/3 ) - b / 3a = 0,706

30 tháng 3 2017

\(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\left(\dfrac{x^2-4}{x^2-1}\right)=0\)

\(\Leftrightarrow20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\left(\dfrac{x-2}{x+1}\right)\left(\dfrac{x+2}{x-1}\right)=0\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x-2}{x+1}=a\\\dfrac{x+2}{x-1}=b\end{matrix}\right.\)thì ta có

\(20a^2-5b^2+48ab=0\)

\(\Leftrightarrow\left(10a-b\right)\left(2a+5b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=10a\\5b=2a\end{matrix}\right.\)

Rồi thế vô giải tiếp đi. Còn lại đơn giản nên tự làm nhé

29 tháng 3 2017

x= +-2