K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

Tính nhanh được thì em cảm ơn 

2 tháng 8 2023

Bạn nãy vừa đăng câu này rồi mà, bạn chú ý phần thông báo để nhận lời giải nha.

`@` `\text {Ans}`

`\downarrow`

`(-2023) \times 33+2023 \times (-68)+2023`

`= 2023 \times (-33 - 68 + 1)`

`= 2023 \times (-101 + 1)`

`= 2023 \times (-100)`

`= -202300`

-100 thì nhân với 2023 phải là -202300 mới đúng chứ ạ

2 tháng 8 2023

Có `xyz=2023=>2023=xyz` 

Thay vào ta có :

\(\dfrac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}=1\\ \dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}=1\\ \dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+z+1}=1\\ \dfrac{xz+1+z}{1+xz+z}=1\left(dpcm\right)\)

 

14 tháng 9 2023

Xét VT : x+3x+5x+7x+......+2023x

Số hạng của dãy số trên là : \(\dfrac{2023-1}{2}+1=1012\left(sốhạng\right)\)

Tổng số  của dãy số trên là : \(\dfrac{\left(2023x+x\right).1012}{2}\text{=}1012x.1012\)

Do đó : ta có :

\(1012x.1012\text{=}2023.2024\)

\(1012x\text{=}4046\)

\(x\text{=}\dfrac{2023}{506}\)

15 tháng 9 2023

VT = x + 3x + 5x + 7x +... + 2023x = [(2023 - 1):2 +1] . (2023+1)x = 1012. 2024x = 2048288x

VP= 2023 . 2024= 4094552

VT=VP <=> 2048288x =4094552

<=>\(x\approx2\)

15 tháng 9 2023

loading...

Bạn nhìn tạm nha.

13 tháng 12 2023

a)(−2023).33+2023.(−68)+2023�)(-2023).33+2023.(-68)+2023

=2023.(−33−68+1)=2023.(-33-68+1)

=2023.(−100)=2023.(-100)

=−202300=-202300

b)(38−29+43)−(43+38)�)(38-29+43)-(43+38)

=38−29+43−43−38=38-29+43-43-38

=(38−38)−29+(43−43)=(38-38)-29+(43-43)

=−29=-29

=−29=-29

 

12 tháng 6 2023

giúp em với

26 tháng 4 2022
Miug
17 tháng 4 2023

Áp dụng tính chất : Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) ( a; b; n ϵ N , b; n ≠ 0 )

Ta có \(\dfrac{2023^{31}+5}{2023^{32}+5}< 1\)

⇒ \(B=\dfrac{2023^{31}+5}{2023^{32}+5}< \dfrac{2023^{31}+5+2018}{2023^{32}+5+2018}=\dfrac{2023^{31}+2023}{2023^{32}+2023}=\dfrac{2023\left(2023^{30}+1\right)}{2023\left(2023^{31}+1\right)}=\dfrac{2023^{30}+1}{2023^{31}+1}=A\)Vậy A > B

17 tháng 4 2023

Ta có 2023A = \(\dfrac{2023.\left(2023^{30}+5\right)}{2023^{31}+5}=\dfrac{2023^{31}+5.2023}{2023^{31}+5}\)

\(=1+\dfrac{2022.5}{2023^{31}+5}\)

Lại có 2023B = \(\dfrac{2023.\left(2023^{31}+5\right)}{2023^{32}+5}=\dfrac{2023^{32}+2023.5}{2023^{32}+5}\)

\(=1+\dfrac{2022.5}{2023^{32}+5}\)

Dễ thấy 202331 + 5 < 202332 + 5

\(\Leftrightarrow\dfrac{2022.5}{2023^{31}+5}>\dfrac{2022.5}{2023^{32}+5}\)

\(\Leftrightarrow1+\dfrac{2022.5}{2023^{31}+5}>1+\dfrac{2022.5}{2023^{32}>5}\)

\(\Leftrightarrow2023A>2023B\Leftrightarrow A>B\)

\(2023A=\dfrac{2023^{31}+4046}{2023^{31}+2}=1+\dfrac{4044}{2023^{31}+2}\)

\(2023B=\dfrac{2023^{32}+4046}{2023^{32}+2}=1+\dfrac{4044}{2023^{32}+2}\)

mà 2023^31+2<2023^32+2

nên A>B