\(2021^2 -2021 nhân 4040 + 2020^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(2021^2-2021.4040+2020^2=2021^2-2.2021.2020+2020^2\)

\(=\left(2021-2020\right)^2=1^2=1\)

14 tháng 6 2020

\(a^{2020}+b^{2020}=a^{2021}+b^{2021}=a^{2022}+b^{2022}\)       (1)

Ta có : \(a^{2021}+b^{2021}=a^{2022}+b^{2022}\)

\(\Leftrightarrow a^{2021}+b^{2021}=a^{2022}+a^{2021}b+b^{2022}+ab^{2021}-a^{2021}b-ab^{2021}\)

\(\Leftrightarrow a^{2021}+b^{2021}=a^{2021}\left(a+b\right)+b^{2021}\left(a+b\right)-ab\left(a^{2020}+b^{2020}\right)\)

\(\Leftrightarrow a^{2021}+b^{2021}=\left(a^{2021}+b^{2021}\right)\left(a+b\right)-ab\left(a^{2020}+b^{2020}\right)\)

\(\Leftrightarrow a+b-ab=1\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-1=0\\1-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}}\)

(+) Thay \(a=1\)vào \(\left(1\right)\)ta được : 

\(b^{2020}=b^{2021}=b^{2022}\Leftrightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}\Leftrightarrow}b=1\left(b>0\right)\)

(+) Thay \(b=1\)vào (1) ta được : 

\(a^{2020}=a^{2021}=a^{2022}\Leftrightarrow\orbr{\begin{cases}a=1\\a=0\end{cases}\Leftrightarrow}a=1\left(a>0\right)\)

\(\Rightarrow a=b=1\)\(\Rightarrow a^{2020}+b^{2021}=1^{2020}+1^{2021}=2\)

22 tháng 8 2019

a)

\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)

b)

B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)

22 tháng 8 2019

a. \(A=\frac{2020^3+1}{2020^2-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020^2-2020+1}=2020+1=2021\)

b. \(B=\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}=2020-1=2019\)

25 tháng 8 2018

\(2019\equiv-1\left(mod2020\right)\Rightarrow2019^{2021}\equiv-1\left(mod2020\right)\)

\(2021\equiv1\left(mod2020\right)\Rightarrow2021^{2023}\equiv1\left(mod2023\right)\)

\(\Rightarrow2019^{2021}+2021^{2023}\equiv-1+1\equiv0\left(mod2020\right)\)

Hay 20192021 + 20212023 chia hết 2020

Ta có: \(f\left(2019\right)=2020=2019+1\)          \(f\left(2020\right)=2021=2020+1\)Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là...
Đọc tiếp

Ta có: \(f\left(2019\right)=2020=2019+1\)

          \(f\left(2020\right)=2021=2020+1\)

Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)

\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số nguyên

\(\Rightarrow g\left(x\right)=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)\)(\(a\in\)Z*)

\(\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)

               \(=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)+x+1\)

\(f\left(2021\right)=a\left(2021-2019\right)\left(2021-2020\right)\left(2021-x_0\right)+2021+1\)

                    \(=a.1.2\left(2021-x_0\right)+2022\)

\(f\left(2018\right)=a\left(2018-2019\right)\left(2018-2020\right)\left(2018-x_0\right)+2018+1\)

                      \(=a.1.2.\left(2018-x_0\right)+2019\)

\(\Rightarrow f\left(2021\right)-f\left(2018\right)=a.1.2\left(2021-2018\right)+3\)

                                                     \(=6a+3\)

Làm nốt

 

3
31 tháng 10 2019

Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:

\(f\left(2019\right)=2020;f\left(2020\right)=2021\)

CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số

31 tháng 10 2019

Cho xin cái đề ạ

9 tháng 8 2020

1) = \(x^2-1=\left(x-1\right)\left(x+1\right)\)

2) \(=\left(x^2+8\right)^2-16x^2=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

3) 

\(=x^4-x+x^2+x+1=x\left(x^3-1\right)+x^2+x+1=x\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

4) \(=x^5-x^2+x^2+x+1=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

9 tháng 8 2020

1.\(x^2-2021+2020=x^2-1=\left(x+1\right)\left(x-1\right)\)

2. \(x^4+64=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

3. \(x^4+x^2+1=\left(x^2+x+1\right)\left(x^2+x+1\right)\)

4. \(x^5+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

23 tháng 6 2020

Bài làm:

Ta có: \(2020^x\)chẵn với mọi x mà 2021 lẻ

=> \(x^{2020+x}\)lẻ

Xét: x = 1 => 2020 +1 =2021 (hợp lý)

Vậy x = 1 thỏa mãn

Xét: x > 1 => 2020> 2021 (vô lý)

Xét: x < 1 => 2020x < 2020 và x2020+x < 0

=> 2020x + x2020+x < 2021 (vô lý)

Vậy x = 1

22 tháng 10 2019

Tổng = 4042 nha !!!

28 tháng 3 2019

\(\frac{x+1}{2018}+\frac{x+2}{2019}=\frac{x+3}{2020}+\frac{x+4}{2021}\)

\(\Leftrightarrow\left(\frac{x+1}{2018}-1\right)+\left(\frac{x+2}{2019}-1\right)=\left(\frac{x+3}{2020}-1\right)+\left(\frac{x+4}{2021}-1\right)\)

\(\Leftrightarrow\frac{x-2017}{2018}+\frac{x-2017}{2019}=\frac{x-2017}{2020}+\frac{x-2017}{2021}\)

\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)

\(\Leftrightarrow x-2017=0\)\(\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\right)\)

\(\Leftrightarrow x=2017\)

Vậy \(S=\left\{2017\right\}\)