K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2015

 

2016.x2017 + 2018 = 4034

2016.x2017  = 4034-2018

2016.x2017  = 2016

x2017  = 1

=>x =1

\(\frac{2016\times2017+4034}{2018\times2019-4034}=\frac{2016\times2017+2\times2017}{2018\times2019-2\times2017}\)

\(=\frac{\left(2016+2\right)\times2017}{2018\times2017+2\times2017-2\times2017}=\frac{\left(2016+2\right)\times2017}{2018\times2017+0}\)

\(=\frac{2018\times2017}{2018\times2017}=1\)

21 tháng 4 2016

1/2.3 +1/3.4+...+1/2016.2017 < 1/2^2+1/3^2+...+1/2016^2

1/2 -1/3+1/3 -1/4+...+1/2016-1/2017 <  1/2^2+1/3^2+...+1/2016^2

1/2-1/2017 <  1/2^2+1/3^2+...+1/2016^2

=> 2015/4034 < 1/2^2+1/3^2+...+1/2016^2

tương tự

 1/2^2+1/3^2+...+1/2016^2 < 1/1.2 +1/2.3+...+1/2015.2016

 1/2^2+1/3^2+...+1/2016^2 < 1- 1/2+1/2 -1/3+...+1/2015- 1/2016

 1/2^2+1/3^2+...+1/2016^2 < 1-1/2016

 1/2^2+1/3^2+...+1/2016^2 < 2015/2016

tích nha

22 tháng 4 2016

nhìn cậu ngốc quá

18 tháng 4 2019

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}=\frac{2015}{2016}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{2016}-\frac{1}{2017}\)

\(=\frac{1}{2}-\frac{1}{2017}=\frac{2015}{4024}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{2015}{4034}\)

vậy ta có điều cần chứng minh

7 tháng 4 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\) ta  có : 

\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A>\frac{1}{2}-\frac{1}{2017}\)

\(A>\frac{2015}{4034}\) \(\left(1\right)\)

Lại có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(A< 1-\frac{1}{2016}\)

\(A< \frac{2015}{2016}\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(\frac{2015}{4034}< A< \frac{2015}{2016}\) ( đpcm ) 

Vậy \(\frac{2015}{4034}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)

Chúc bạn học tốt ~ 

7 tháng 4 2018

cam on ban rat nhieu PHUNG MINH QUAN !!!!!!!!!!

10 tháng 4 2018

Ta có : 

\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)

\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)

\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow P>Q\)

Chúc bạn học tốt !!! 

10 tháng 4 2018

vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q

Vậy P<Q.

mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá