Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B = \(2016^2+2016^2\cdot2017^2+2017^2\)
B = \(2016^2+2016^2\cdot\left(2016+1\right)^2+\left(2016+1\right)^2\)
B = \(2016^2+2016^4+2\cdot2016^2\cdot2016+2016^2+\left(2016+1\right)^2\)
B =\(2016^2+\left(2016^2+2016\right)^2+\left(2016+1\right)^2\)
B = \(\left(2016+1\right)^2\left(2016^2+1\right)+2016^2\)
B = \(2017^2\left(2017^2-2\cdot2016\right)+2016^2\)
B = \(2017^2-2\cdot2017^2.2016+2016^2\)
B = \(\left(2017^2-2012\right)^2\)
=> A = \(\sqrt{\left(2017^2-2016\right)^2}\)
A = \(2017^2-2016\)
Thuộc N => A là số tự nhiên
Xét với x > 0 : \(\sqrt{1+\left(x-1\right)^2+\frac{\left(x-1\right)^2}{x^2}}+\frac{x-1}{x}=\sqrt{\frac{\left(x^2-x+1\right)^2}{x^2}}+\frac{x-1}{x}\)
\(=\frac{x^2-x+1}{x}+\frac{x-1}{x}=\frac{x^2}{x}=x\)
Áp dụng với x = 2017 suy ra biểu thức cần tính có giá trị bằng 2017
\(A=\sqrt{2016^2+\frac{2017}{2017}+\frac{2016^2-1}{2017^2}-\frac{1}{2017^2}}+\frac{2016}{2017}\)
\(A=\sqrt{2016^2+\frac{1}{2017^2}+\frac{2015.2017}{2017^2}+\frac{2017}{2017}}+\frac{2016}{2017}\)
\(A=\sqrt{2016^2+2.2016.\frac{1}{2017}+\frac{1^2}{2017^2}}+\frac{2016}{2017}\)
\(A=\sqrt{\left(2016+\frac{1}{2017}\right)^2}+\frac{2016}{2017}\)
\(A=\left(2016+\frac{1}{2017}\right)+\frac{2016}{2017}\)
A = 2017
Chúc bạn làm bài tốt
ta chứng minh Q là nình phương của 1 số
ta thấy 20162+2016220172+20172=20162+20162(2016+1)2+(2016+1)2=20162+(2016+1)2(20162+1)=20162+(20162+1)(20162+2.2016+1)
=20162+(20162+1)2+(20162+1)2.2016=(2016+20162+1)2
vậy Q=\(\sqrt{\left(2016+2016^2+1\right)^2}\)=2016+20162+1
Khá phổ biến!
\(\sqrt{1+2016^2+\dfrac{2016^2}{2017^2}}+\dfrac{2016}{2017}=\sqrt{\left(2016+1\right)^2-2.2016+\dfrac{2016^2}{2017^2}}+\dfrac{2016}{2017}\) \(=\sqrt{2017^2-2.2016+\dfrac{2016^2}{2017^2}}+\dfrac{2016}{2017}=\sqrt{\left(2017-\dfrac{2016}{2017}\right)^2}+\dfrac{2016}{2017}\)
\(=2017-\dfrac{2016}{2017}+\dfrac{2016}{2017}=2017\)
Ta có (a1 + a2 + ...+a2016)3 = 20166051
<=> a13 + a23 +...+ a20163 + 3A = 20166051
Vì 20166051 và 3A chia hết cho 3 nên a13 + a23 +...+ a20163 chia hết cho 3
Đặt 2017 = a thì ta có
A = \(\sqrt{1+\left(a-1\right)^2+\frac{\left(a-1\right)^2}{a^2}}+\frac{a-1}{a}\)
= \(\sqrt{\frac{\left(a^2-a+1\right)^2}{1a^2}}+\frac{a-1}{a}\)
= a
Vậy cái đó bằng 2017