Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi B = 1x2 + 2 x 3 + 3 x 4 + ... + 2016 x2017
3B = 3 x ( 1x2 + 2x3 + 3x4 + ... + 2016x2017)
= 1x2x3 + 2x3x3 + 3x4x3 + ... + 2016x2017x3 )
= 1x2x3 + 2x3x( 4-1) + 3x4x( 5 -2 ) + ... + 2016x2017x( 2018 - 2015)
= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + ... + 2016x2017x2018 - 2015x2016x2017
= 2016 x2017 x2018
B = 672 x2017 x2018
Mà A = \(\frac{672x2017x2018}{2017x2018}\)
= 672
Vậy A = 672
Ta có :
\(\frac{2017\times2018+1}{2019+2016\times2018}\)
\(=\frac{2017\times2018+1}{1+2018+2016\times2018}\)
\(=\frac{2017\times2018+1}{1+2018\times\left(2016+1\right)}\)
\(=\frac{2017\times2018+1}{1+2018\times2017}\)
\(=1\)
\(\frac{2017.2018+1}{2019+2016.2018}\)
\(=\frac{2017.2018+1}{1+2018+2016.2018}\)
\(=\frac{2017.(2018+1)}{(1+2018).\left(2016+1\right)}\)
\(=\frac{2017.2019}{2019.2017}\)
\(=\frac{1}{1}=1\)
2016 × 2018 - 1/2015 + 2016 × 2017
= 2016 × (2017 + 1) - 1/2015 + 2016 × 2017
= 2016 × 2017 + (2016 - 1)/2015 + 2016 × 2017
= 2016 × 2017 + 2015/2015 + 2016 × 2017
= 1
Ta có:
\(A=\frac{2017\cdot2018-1}{2017\cdot2018-2}\)
\(A=\frac{2017\cdot2018-2+1}{2017\cdot2018-2}\)
\(A=\frac{2017\cdot2018-2}{2017\cdot2018-2}+\frac{1}{2017\cdot2018-2}\)
\(A=1+\frac{1}{2017\cdot2018-2}\)
Ta có phân số trung gian là 1. Ta có:
\(A>1\) ; \(B< 1\)
\(\Rightarrow A>1>B\)
\(\Rightarrow A>B\)
Vậy A>B
Chúc em học tốt!
\(\Rightarrow\text{❤️✔✨♕✨✔️❤ }\Leftarrow\)
\(\text{Ta có :}\)
\(A=\frac{2017\cdot2018-1}{2017\cdot2018-2}=\frac{4070305}{4070304}=1\frac{1}{4070304}\)
\(B=\frac{2017}{2018}\)
\(\text{Vì : }1\frac{1}{4070304}>1\text{ mà }\frac{2017}{2018}< 1\text{ nên }1\frac{1}{4070304}>\frac{2017}{2018}\)
\(\Rightarrow A>B\)
Đặt A=1x2+2x3+3x4+...+2016x2017
=>3A=3x1x2+3x2x3+3x3x4+...+3x2016x2017
=>3A=(3-0)x1x2+(4-1)x2x3+(5-2)x3x4+...+(2018-2015)x2016x2017
=>3A=1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+...+2016x2017x2018-2015x2016x2017
=>3A=2016x2017x2018
=>A=\(\frac{2016\times2017\times2018}{3}\)(tự tính nha)
S = 1x2 + 2x3 + 3x4 + 4x5 + ... + 2016x2017
3S = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 2016x2017x(2018-2015)
3S = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 2016x2017x2018 - 2015x2016x2017
3S = 2016x2017x2018
S = 1/3 x 2016x2017x2018.
=(2015/ 2019 + 3/2019 + 1/2019 ) : 1/2
= 2019/2019 x 2
= 1 x2
=2
2015/2019:1/2+3/2019:1/2+1/2019:1/2
=(2015/2019+3/2019+1/2019):1/2
=1:1/2
=2
k cho mink nha
Ta có: 2015 > 1
=> 2015 * 2015 > 1
2011 > 1
2019 > 1
=> 2011 * 2019 > 1
=> ( 2015 * 2015 ) * ( 2011 * 2019 ) > 1
=> A > 1
A = ( 2015 x 2015 ) x ( 2011 x 2019 )
Ta có:
2015 > 1; 2011 > 1 ; 2019 > 1
\(\Rightarrow\)( 2015 x 2015 ) x ( 2011 x 2019 ) > 1
Vậy A > 1
\(\frac{2015+2016.2017}{2017.2018-2019}\)
\(=\frac{2015+2016.2017}{2017.\left(2016+2\right)-2019}\)
\(=\frac{2015+2016.2017}{2017.2016+4034-2019}\)
\(=\frac{2015+2016.2017}{2017.2016+2015}\)
\(=1\)
1 nha bạn