K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

Xét vế trái biểu thức, ta có:
\(\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\right)\cdot x\)
\(=\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\cdot x\)
\(=\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\right]\cdot x\)
\(=\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\right]\cdot x\)
\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\cdot x\)
Xét vế phải biểu thức, ta có:
\(\frac{2012}{51}+\frac{2012}{52}+...+\frac{2012}{99}+\frac{2012}{100}=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\cdot2012\)
Từ đầu bài và 2 kết luận trên, ta suy ra:
\(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\cdot x=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\cdot2012\)
\(\Rightarrow x=2012\)

31 tháng 7 2016
kho that
14 tháng 4 2016

Sai đề à bạn    

avt408734_60by60.jpg        Trần Thị Huệ
5 tháng 2 2017

Nhầm !!!!!

\(B-A=\frac{2012^{101}}{2011}-\frac{2012^{101}-1}{2011}=\frac{2012^{101}-\left(2012^{101}-1\right)}{2011}=\frac{1}{2011}\)

OK NHA

5 tháng 2 2017

ai nhanh nhat dc 3 k nha

5 tháng 2 2017

A = 1 + 2012 + 20122 + ... + 2012100

2012A = 2012 + 20122 + 20123 + ... + 2012101

2012A - A = (2012 + 20122 + 20123 + ... + 2012101) - (1+ 2012 + 20122 + ...+ 2012100)

2011A = 2012101 - 1

A = \(\frac{2012^{101}-1}{2011}\)

=> B - A = \(\frac{2012^{101}}{2011}-\frac{2012^{101}-1}{2011}=\frac{2012^{101}-\left(2012^{101}-1\right)}{2011}=\frac{2012^{101}-2012^{101}+1}{2011}=\frac{1}{2011}\)

thank bạn

15 tháng 7 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{1+\frac{2012}{2011}+\frac{2012}{2010}+\frac{2012}{2009}+...+\frac{2012}{2}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2012}+\frac{2012}{2011}+...+\frac{2012}{2}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{2}\right)}=\frac{1}{2012}\)

8 tháng 4 2017

Ta có :

\(A=1+2012+2012^2+2012^3+........+2012^{100}\)

\(2012A=2012+2012^2+2012^3+......+2012^{100}+2012^{101}\)

\(\Rightarrow2012A-A=\left(2012+2012^2+.......+2012^{101}\right)-\left(1+2012+........+2012^{100}\right)\)

\(2011A=2012^{101}-1\)

\(\Rightarrow A=\dfrac{2012^{101}-1}{11}\)

\(B=\dfrac{2012^{101}}{2011}\)

\(\Rightarrow B-A=\dfrac{2012^{101}}{2011}-\dfrac{2012^{101}-1}{2011}\)

\(=\dfrac{2012^{101}-\left(2012^{101}-1\right)}{2011}\)

\(=\dfrac{2012^{101}-2012^{101}+1}{2011}\)

\(=\dfrac{1}{2011}\)

~ Chúc bn học tốt ~

8 tháng 4 2017

Có: \(2012A=2012+2012^2+...+2012^{101}\)
=> \(2012A-A=\left(2012+2012^2+...+2012^{101}\right)-\left(1+2012+...+2012^{100}\right)\)
\(\Rightarrow2011A=2012^{101}-1\)
\(\Rightarrow A=\dfrac{2012^{101}-1}{2011}\)
Do đó \(B-A=\dfrac{2012^{101}}{2011}-\dfrac{2012^{101}-1}{2011}=\dfrac{1}{2011}\)