Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như đề bài phải là : Tính tổng : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)
Nếu thế giải như sau : \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}.\)Vậy tổng đó là 2010/2011.
Ta có :\(\frac{1}{1}:2+\frac{1}{2}:3+...+\frac{1}{2010}:2011\)
= \(\frac{1}{1}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{2010}\times\frac{1}{2011}\)
= \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2010\times2011}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
= \(1-\frac{1}{2011}\)
= \(\frac{2010}{2011}\)
\(\frac{1}{1}:2+\frac{1}{2}:3+\frac{1}{3}:4+...+\frac{1}{2009}:2010+\frac{1}{2010}:2011\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{2009}-\frac{1}{2009}\right)+\left(\frac{1}{2010}-\frac{1}{2010}\right)-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}\)
~ Hok tốt ~
\(\frac{1}{1}:2+\frac{1}{2}:3+\frac{1}{3}:4+...+\frac{1}{2009}:2010+\frac{1}{2010}:2011\)
\(=\frac{1}{1}:\frac{2}{1}+\frac{1}{2}:\frac{3}{1}+\frac{1}{3}:\frac{4}{1}+...+\frac{1}{2009}:\frac{2010}{1}+\frac{1}{2010}:\frac{2011}{1}\)
\(=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{2009}\cdot\frac{1}{2010}+\frac{1}{2010}\cdot\frac{1}{2011}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2010}+\frac{1}{2010\cdot2011}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}\)
Dấu " . " là dấu nhân nhé
a = 1/2 nhân 2 + 1/3 nhân 3 + 1/4 nhân 4 + .....+ 1/2009 nhân 2009 + 1/2010 nhân 2010
so sánh a với 1
a=1/2.2+1/3.3+1/4.4+...+1/2009.2009+1/2010.2010(có 2009 số hạng)
a=1+1+1+...+1+1(2009 số 1)
a=1.2009=2009
Vậy a>1