\(\displaystyle \frac{x \sqrt{x}+1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

1, \(x=13-4\sqrt{10}=\frac{26-8\sqrt{10}}{2}=\frac{10-2.4.\sqrt{10}+16}{2}=\frac{\left(\sqrt{10}-4\right)^2}{2}\)

Ta có: \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\)

\(=\sqrt{x}\left(\sqrt{x}+\sqrt{5}\right)-2\sqrt{2}\left(\sqrt{x}+\sqrt{5}\right)\)

\(=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-2\sqrt{2}\right)\)

\(=\left(\frac{4-\sqrt{10}}{\sqrt{2}}+\sqrt{5}\right)\left(\frac{4-\sqrt{10}}{\sqrt{2}}-2\sqrt{2}\right)\)

\(=\left(2\sqrt{2}-\sqrt{5}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}-2\sqrt{2}\right)\)

\(=2\sqrt{2}.\left(-\sqrt{5}\right)=-2\sqrt{10}\)

19 tháng 6 2019

2, a,  Để đồ thị h/s  đi qua gốc tọa độ thì x=y=0

Ta có: \(-2m-1=0\Leftrightarrow m=\frac{-1}{2}\)

b, giao điểm của h/s y=x-2m-1 với trục hoành A(2m+1;0) với trục tung B(0;-2m-1)

Có: OA=2m+1; OB=|-2m-1|=2m+1

Áp dụng hệ thức lượng trong tam giác vuông coS:

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(2m+1\right)^2}+\frac{1}{\left(2m+1\right)^2}=\frac{2}{\left(2m+1\right)^2}\)

\(\Leftrightarrow\frac{\left(2m+1\right)^2}{2}=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2m+1=1\\2m+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}}\)

c, Hoành độ trung điểm I của AB là: \(x_I=\frac{x_A+x_B}{2}=\frac{2m+1}{2}\)

Tung độ trung điểm I của AB: \(y_I=\frac{y_A+y_B}{2}=\frac{-\left(2m+1\right)}{2}\)

Ta có: \(y_I=-x_I\)=> quỹ tích trung điểm I của AB là đường thẳng y=-x

25 tháng 9 2019

1) a) \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)

\(=\frac{x+3\sqrt{x}+2}{x-4}+\frac{2x-4\sqrt{x}}{x-4}+\frac{-2-5\sqrt{x}}{x-4}\)

\(=\frac{3x-6\sqrt{x}}{x-4}\)

   b) \(Q=1\Leftrightarrow3x-6\sqrt{x}=x-4\)

\(\Leftrightarrow2x-6\sqrt{x}+4=0\)

Đặt \(\sqrt{x}=t\)\(\left(t\ge0\right)\)

\(pt\Leftrightarrow2t^2-6t+4=0\)

\(\Delta=\left(-6\right)^2-4.2.4=4,\sqrt{\Delta}=2\)

pt ẩn phụ có 2 nghiệm:

\(t_1=\frac{6+2}{4}=2\);\(t_2=\frac{6-2}{4}=1\)

\(\Rightarrow x\in\left\{1;4\right\}\)

17 tháng 2 2023

ĐKXĐ \(x\ge0;x\ne4\)

1. Với x = 25 : 

\(A=\dfrac{\sqrt{25}+1}{25-4}=\dfrac{2}{7}\)

2. \(B=\dfrac{18-\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}+\dfrac{4\left(\sqrt{x}+2\right)}{\left(2-\sqrt{x}\right)\left(\sqrt{x+2}\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{18-\sqrt{x}-4\left(\sqrt{x}+2\right)+\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

3.\(P=A.B=\dfrac{\sqrt{x}+1}{x-4}.\dfrac{\sqrt{x}-2}{\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}\)

<=> 4P = \(\dfrac{4\sqrt{x}+4}{\left(\sqrt{x}+2\right)^2}=\dfrac{x+4\sqrt{x}+4-x}{\left(\sqrt{x}+2\right)^2}=1-\dfrac{x}{\left(\sqrt{x}+2\right)^2}\le1\)(Do \(x\ge0\))

<=> \(P\le\dfrac{1}{4}\)("Dấu "=" xảy ra <=> x = 0)  

giúp mình với ạ

25 tháng 9 2019

bạn kiểm tra lại thử đề có sai không ạ?

Bài 1 Tìm điều kiện để căn thức \(\sqrt{-3x+6}\) có nghĩa 2) Tính a)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\) b) \(3\sqrt{8}-\sqrt{50}-\sqrt{\left(\sqrt{2-1}\right)^2}\) 3)Cho hệ phương trình \(\left\{{}\begin{matrix}4x+ay=b\\x-by=a\end{matrix}\right.\) Tìm a,b để hệ đã cho có nghiệm duy nhất (x,y)=(2;-1) Bài 2 Cho hàm số y=(2m-1)x+m-3 a) Tìm m để đồ thị hàm số đi qua điểm (2;5) b) Tìm m để đồ thị của hàm số cắt trục...
Đọc tiếp

Bài 1 Tìm điều kiện để căn thức \(\sqrt{-3x+6}\) có nghĩa 2) Tính a)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\) b) \(3\sqrt{8}-\sqrt{50}-\sqrt{\left(\sqrt{2-1}\right)^2}\) 3)Cho hệ phương trình \(\left\{{}\begin{matrix}4x+ay=b\\x-by=a\end{matrix}\right.\) Tìm a,b để hệ đã cho có nghiệm duy nhất (x,y)=(2;-1) Bài 2 Cho hàm số y=(2m-1)x+m-3 a) Tìm m để đồ thị hàm số đi qua điểm (2;5) b) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ \(x=\sqrt{2}-1\) Bài 3 \(M=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\) (a>0;a khác 4) a) Rút gọn M b) Tìm a sao cho m<-2 Bài 4 Tính (a)\(\sqrt{313^2-312^2}+\sqrt{17^{2-8^2}}\left(b\right)\frac{2+\sqrt{2}}{1+\sqrt{2}}\) 2) Giai hệ phương trình\(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\) 3) Tìm X biết \(\sqrt{9\left(x-1\right)}=21\) Bài 5 Cho hàm số y=(m-1)x+m+3 a) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y=-2x+1 b) Tìm giá trị của m để đồ thị hàm số đi qua điểm (1;-4 ) Bài 6 Cho biểu thức \(A=\left(\frac{\sqrt{x}}{\sqrt{x-1}}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\) a) Tìm đkxđ ,Rút gọn A b) Tính giá trị của A khi \(x=3-2\sqrt{2}\) Bài 7 1) Tính( a)\(\frac{\sqrt{5}}{4}-\frac{1}{\sqrt{5}+1}\left(b\right)\left(8\sqrt{27}-6\sqrt{48}\right):\sqrt{3}\) 2) Cho\(A=\left(1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\) Với x>0 ,x khác 1, x khác 4 a)rút gọn b) Tìm x để \(A=\frac{1}{2}\) Bài 8 Cho hàm số Y=(m-2)x+n (a)Đi qua điểm A (-1;2) và B(3;-4) (b) Cắt Oy tại điểm có tung độ bằngà cắt Ox tại điểm có hoành độ bắngìm các giá trị của m và n để đồ thị (d) của hàm số( xin cảm ơn )

0
19 tháng 10 2017

1. a) Để hàm số đồng biến thì m-1>0\(\Rightarrow\)m>1  b) Để hàm số nghịch biến m-1<0\(\Rightarrow\)m<1        2. a) Tự làm  b) Xét phương trình hoành độ -2x+1=2x\(\Rightarrow\)x=1/4\(\Rightarrow\)   y=1/2. Vậy giao điểm của d và d' có tọa độ (1/4; 1/2)              

19 tháng 10 2017

3 a)ĐKXĐ \(x\ge0\)\(x\ne1\)A=\(\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{-2}{\sqrt{x}+1}\)  b)Khi x= \(6-2\sqrt{5}\)thì A=\(\frac{-2}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}\)=\(\frac{2}{\sqrt{5}}\)

7 tháng 12 2018

ai trả lời giúp đi làm ơn mà