K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(2x+3\right)\left(2x+1\right)-\left(2x+5\right)\left(2x+7\right)=1-\left(6x^2+9x-9\right)\)

\(\Leftrightarrow4x^2+2x+6x+3-\left(4x^2+14x+10x+35\right)=1-6x^2-9x+9\)

\(\Leftrightarrow4x^2+8x+3-4x^2-24x-35-1+6x^2+9x-9=0\)

\(\Leftrightarrow6x^2-7x-42=0\)

\(\Delta=49-4\cdot6\cdot\left(-42\right)=1057\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{1057}}{12}\\x_2=\dfrac{7+\sqrt{1057}}{12}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{7-\sqrt{1057}}{12};\dfrac{7+\sqrt{1057}}{12}\right\}\)

15 tháng 4 2020

1) (x+6)(3x-1)+x+6=0

⇔(x+6)(3x-1)+(x+6)=0

⇔(x+6)(3x-1+1)=0

⇔3x(x+6)=0

2) (x+4)(5x+9)-x-4=0

⇔(x+4)(5x+9)-(x+4)=0

⇔(x+4)(5x+9-1)=0

⇔(x+4)(5x+8)=0

3)(1-x)(5x+3)÷(3x-7)(x-1)

=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)

12 tháng 9 2017

bài này bạn nhân lần lượt ra, cuối cùng hết giá trị của x, cò lại số tự nhiên. vậy là đã cm được biểu thức k phụ thuộc vào giá trị của biến rồi đó.

VD: 

\(\left(x-3\right)\left(x^2+3x+9\right)-x^3+7\)

\(=x^3+3x^2+9x-3x^2-9x-27-x^3+7\)

\(=-20\)

9 tháng 1 2021

Câu 1 : 

a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)

\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)

\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)

Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)

tương tự 

16 tháng 5 2021

\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)

\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)

\(< =>95-24x+40=6-4x-15x+5\)

\(< =>-24x+135=-19x+11\)

\(< =>5x=135-11=124\)

\(< =>x=\frac{124}{5}\)

18 tháng 1 2022

một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?

24 tháng 6 2017

a)\(2x\left(x+1\right)-3-2x=5\)

\(\Leftrightarrow2x^2+2x-3-2x=5\)

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4=\left(-2\right)^2=2^2\)

              \(\Rightarrow x=2;-2\)

b)\(2x\left(3x+1\right)+\left(4-2x\right)=7\)

\(\Leftrightarrow6x^2+2x+4-2x=7\)

\(\Leftrightarrow6x^2+4=7\)

\(\Leftrightarrow6x^2=3\)

\(\Leftrightarrow x^2=\frac{1}{2}=-\sqrt{\frac{1}{2}}=\sqrt{\frac{1}{2}}\)

c)\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x-1\right)^2=6\)

\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x^2-2x+1\right)=6\)

\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)

\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)

\(\Leftrightarrow3x^2+15x=0\)

\(\Leftrightarrow3x\left(x+5\right)=0\)

         \(\Rightarrow\orbr{\begin{cases}3x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

20 tháng 7 2018

Tìm x, biết:

1) 2x ( x - 5)  - x ( 2x - 4 ) = 15

<=> 2x2 - 10x - 2x2 + 4x - 15 = 0

<=> -6x - 15 = 0

<=> -6x = 15

<=> x = -15/6

2)  ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6

<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0

<=> -4x = -16

<=> x = 4

3)  4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x

<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0

<=> x + 4 = 0

<=> x = -4

4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5

<=> 2x+ x + 6x + 3 - 2x2 - 4x + 5 = 0

<=> 3x + 8 = 0

<=> 3x = -8

<=> x = -8/3

5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0

<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0

.......

6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)

<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0

<=> -2x + 40 = 0

<=> -2x = -40

<=> x = 20

Còn lại tương tự ....

19 tháng 7 2018

1)2x^2-10x-2x^2+14x=15

4x=15

x=15/4

23 tháng 2 2021

1)\(2x+6=0\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

Vậy : x=3 là nghiệm PT

2)\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2=4\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)

Vậy:....

3)\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

\(\Rightarrow\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)

\(\Leftrightarrow x^2-4x+4+3x+6-x^2+11=0\)

\(\Leftrightarrow-x+21=0\)

\(\Leftrightarrow-x=-21\)

\(\Leftrightarrow x=21\)

Vậy:......

4) \(x\left(x^2-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x^2-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy:........

5)\(4x+20=0\)

\(\Leftrightarrow4x=-20\)

\(\Leftrightarrow x=-5\)

Vậy:...

6)\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

\(\Rightarrow x\left(x+3\right)+\left(x+1\right)\left(x-2\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+3x+x^2-2x+x-2-2x^2-2x=0\)

\(\Leftrightarrow-2=0\)(vô lí)

Vậy : PT vô nghiệm

7)\(\frac{1+2x-5}{6}=\frac{3-x}{4}\)

\(\Leftrightarrow\frac{-4+2x}{6}=\frac{3-x}{4}\)

\(\Rightarrow2\left(-4+2x\right)=3\left(3-x\right)\)

\(\Leftrightarrow-8+4x-9+3x=0\)

\(\Leftrightarrow-17+7x=0\)

\(\Leftrightarrow7x=17\)

\(\Leftrightarrow x=\frac{17}{7}\)

8) Làm tương tự

9) \(2\left(x+1\right)=5x-7\)

\(\Leftrightarrow2x+2-5x+7=0\)

\(\Leftrightarrow-3x+9=0\)

\(\Leftrightarrow-3x=-9\)

\(\Leftrightarrow x=3\)

#H

1.\(2x+6=0\)

\(\Leftrightarrow2\left(x+3\right)=0\)

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)

2.\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-4=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{3;-1\right\}\)

3.\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

ĐKXĐ :\(x\ne\pm2\)

Ta có ; \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{x^2-4x+4+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{x^2-x+10}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-x+10=x^2-11\)

\(\Leftrightarrow21-x=0\)

\(\Leftrightarrow x=21\)(Thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là \(S=\left\{21\right\}\)

4.\(x\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=0\)

hoặc \(x-1=0\)

hoặc \(x+1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{0;\pm1\right\}\)

5.\(4x+20=0\)

\(\Leftrightarrow4\left(x+5\right)=0\)

\(\Leftrightarrow x+5=0\)

\(\Leftrightarrow x=-5\)

Vậy tập nghiệm của PT là \(S=\left\{-5\right\}\)

6.\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ : \(x\notin\left\{-1;0\right\}\)

Ta có : \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2+3x+x^2-x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2+2x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)

\(\Rightarrow2x^2+2x-2=2x^2+2x\)

\(\Leftrightarrow0x=2\)(Vô lí)

Vậy PT vô nghiệm 

7.\(1+\frac{2x-5}{6}=\frac{3-x}{4}\)

\(\Leftrightarrow\frac{12}{12}+\frac{2\left(2x-5\right)}{12}=\frac{3\left(3-x\right)}{12}\)

\(\Leftrightarrow\frac{12+4x-10}{12}=\frac{9-3x}{12}\)

\(\Leftrightarrow\frac{4x+2}{12}=\frac{9-3x}{12}\)

\(\Rightarrow4x+2=9-3x\)

\(\Leftrightarrow7x=7\)

\(\Leftrightarrow x=1\)

Vậy tập nghiệm của PT là \(S=\left\{1\right\}\)

8.\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

ĐKXĐ : \(x\notin\left\{0;2\right\}\)

Ta có : \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x^2+x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+x+2=2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)(Không thỏa mãn ĐKXĐ)_(Thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là \(S=\left\{-1\right\}\)

9.\(2\left(x+1\right)=5x-7\)

\(\Leftrightarrow2x+2=5x-7\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)

29 tháng 8 2016

TÌM X

a) (3x+2)(2x+9)-(6x+1)(x+2)=7

=> 6x2 + 31x +18 - 6x2 - 13x - 2 - 7 = 0

=> 18x + 9 = 0 => 9(2x + 1) = 0 => 2x + 1 = 0 => x = -1/2

b) (x-2)(x+5)-(x+3)(x+2)=-6

=> x2 + 3x - 10 - x- 5x -6 + 6 = 0 => -2x -10 = 0 => -2(x + 5) = 0

=> x + 5 = 0 => x = -5

c) 3(2x-1)(3x-1)-(2x-3)(9x-1)=0

=> 18x2 - 15x +3 - 18x2 + 29x -3 = 0 => 14x = 0 => x = 0

29 tháng 8 2016

a) \(\left(3x+2\right)\left(2x+9\right)-\left(6x+1\right)\left(x+2\right)=7\\\Rightarrow 6x^2+31x+18-6x^2-16x-2-7=0\\ \Rightarrow18x+9=0\Rightarrow9\left(2x+1\right)=0\Rightarrow2x+1=0\Rightarrow x=-\frac{1}{2}\)

b) \(\left(x-2\right)\left(x+5\right)-\left(x+3\right)\left(x+2\right)=-6\\ \Rightarrow x^2+3x-10-x^2-5x-6+6=0\\ \Rightarrow-2x-10=0\\ \Rightarrow-2\left(x+5\right)=0\\ \Rightarrow x+5=0\\ \Rightarrow x=-5\)

c) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\\ \Rightarrow18x^2-15x+3-18x^2+29x-3=0\\ \Rightarrow14x=0\\ \Rightarrow x=0\)