Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abba=a*1001+b*110
=a*11*91+b*11*10
=11*(a*91+b*10)
Vì 11*(a*91+b*10) chia hết cho 11 nên abba chia hết cho 11
A=1000a+100b+10b+1a
A=1001a+101b
1001a:11
110b:11
vậy A luôn chia hết cho 11
Ta có : abba = 1000a + 100b + 10b + 1a
= 1001a + 101b
Vì 1001 \(⋮\) 11 => 1001a \(⋮\) 11 và 101 \(⋮\)11 => 101b \(⋮\) 11 => 1001a + 101b \(⋮\) 11 => abba \(⋮\) 11
Vậy A \(⋮\) 11 ( đpcm )
Bài 1: abba = aca . 11 => abba luôn chia hết cho 11
Bài 2: ab - ba = 10a + b - 10b + a = 9a - 9b = 9(a-b) => chúng là bội của 9
Bài 3:
410 + 411 +412 + 413 + ... + 4198 + 4199
= (40 + 41) . 411 + (40 + 41) . 413 + ... + (40 + 41) . 4199
= (4 + 1) . 411 + (4 + 1) . 413 + ... + (4 + 1) . 4199
= 5 . 411 + 5 . 413 + ... + 5 . 4199
= 5 . (411 + 413 + ... + 4199) => M chia hết cho 5
Vậy M là bội của 5
1. Tìm số tự nhiên x, biết:
a) ( x + 16 ) chia hết cho ( x + 1 ):
( x + 1 + 15 ) chia hết cho ( x + 1 )
( x + 1 ) chia hết cho ( x + 1 ); 15 chia hết cho ( x + 1 ).
Vậy ( x + 1 ) thuộc Ư (15) với ( x + 1 ) phải lớn hơn hoặc bằng 1.
Ư (15) = { 1; 3; 5; 15 }.
x + 1 có thể bằng 1; 3; 5 hoặc 15.
Nếu:
x + 1 = 1 => x = 0
x + 1 = 3 => x = 2
x + 1 = 5 => x = 4
x + 1 = 15 => x = 14
Kết luận: Nếu x = 0; 2; 4; 14 thì ( x + 16 ) chia hết cho ( x + 1 )
b) ( 4x + 20 ) chia hết cho ( 2x + 1 )
[ 2. ( 2x + 1 ) + 18 ] chia hết cho ( 2x + 1 )
2. ( 2x + 1 ) chia hết cho ( 2x + 1 ); 18 chia hết cho ( 2x + 1 ). Vì x thuộc N nên 2x + 1 sẽ lớn hơn hoặc bằng 1 và 2x + 1 là số lẻ.
Vậy ( 2x + 1 ) thuộc Ư (18)
Ư (18) = { 1; 2; 3; 6; 9; 18 }.
Vậy 2x + 1 có thể bằng 1; 3; 9 ( như yêu cầu đã nêu ở trên ).
2x + 1 = 1 => 2x = 0 => x = 0
2x + 1 = 3 => 2x = 2 => x = 1
2x + 1 = 9 => 2x = 8 => x = 4
Kết luận: Nếu x = 0; 1; 4 thì ( 4x + 20 ) chia hết cho ( 2x + 1 )
2. Chứng tỏ abba chia hết cho 11.
Ta có: abba = 1000a + 100b + 10b + a
= ( 1000a + a ) + ( 100b + 10b )
= 1001a + 110 b = 11. 91. a + 11. 10 .b
= 11. ( 91. a + 10. b )
Vì 11 chia hết cho 11, ( 91. a + 10. b ) thuộc N nên 11. ( 91. a + 10. b ) chia hết cho 11.
Vậy abba chia hết cho 11.
Mình làm có đúng không? Nếu sai sửa giúp mình nhé!
abba = 1000a + 100b + 10b + a
= 1001a + 110b
Vì 110 và 1001 chia hết cho 11. => 110b và 1001a chia hết cho 11.
=> (1001a + 110b) chia hết cho 11
Vậy abba chia hết cho 11
Ta có A=abba
\(\Rightarrow\)A=1000a+100b+10c+1a
A=1001a+101b
mà 1001\(⋮\)11 và 101\(⋮\)11
\(\Rightarrow\)Với mọi stn ta luôn có A\(⋮\)11
Theo bài ra ta có:
abba = ax1000+bx100+bx10+a
=(ax1000+a)+(bx100+bx10)
=ax(1000+1)+bx(100+10)
=ax1001+bx111
Vì 1001 chia hết cho 11=>ax1001 chia hết cho 11(1)
Vì 111 chia hết cho 11=>bx111 chia hết cho 11(2)
Từ 1 và 2=>abba luôn chia hết cho 11
2(x-1)-60=40
<=> 2(x-1)=40+60=100
<=> 2x-2=100<=> 2x=100+2=102
<=> x=102:2=51
b, A=abba=a.1001+b.110 mà 2 số trên cùng chia hết cho 11
nên A chia hết cho 11 (ĐPCM)
Cám ơn bạn