Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 5 giờ 50 phút =35/6 giờ
Gọi thời gian chảy 1 mình đầy bể của vòi 1 là x giờ (x>0), của vòi 2 là y giờ (y>0)
Trong 1h vòi 1 chảy một mình được: \(\dfrac{1}{x}\) phần bể
Trong 1h vòi 2 chảy 1 mình được: \(\dfrac{1}{y}\) phần bể
Do 2 vòi cùng chảy trong 35/6 giờ đầy bể nên: \(\dfrac{35}{6}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{35}\)
Do cả 2 vòi chảy trong 5h rồi khóa vòi 1 để vòi 2 chảy 2h đầy bể nên:
\(5\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+2.\dfrac{1}{y}=1\Rightarrow\dfrac{5}{x}+\dfrac{7}{y}=1\)
Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{35}\\\dfrac{5}{x}+\dfrac{7}{y}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{10}\\\dfrac{1}{y}=\dfrac{1}{14}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=14\end{matrix}\right.\)
Gọi thời gian vòi 1 chảy một mình đầy bể là x ( giờ ) (x>0),thời gian vòi 2 chảy một mình đầy bể là y ( giờ ) (y>0)
Trong 1 giờ vòi 1 chảy được 1/x ( bể)
Trong 1 giờ vời 2 chảy được 1/y (bể)
Trong 1 giờ cả hai vòi chảy được 1/12 ( bể )
=> ta có phương trình 1/x + 1/y = 1/12 (1)
Trong 4 giờ vòi 1 chảy được 4/x (bể ), trong 3 giờ vòi 2 chảy được 3/y (bể) được 3/10 bể nên ta có
4/x + 3/y = 3/10 (2)
Từ (1) và (2) ta có hệ phương trình
1/x +1/y =1/12
4/x+3/y = 3/10
(từ đây bạn tự giải tiếp nhé,chỉ cần giải xong hệ phương trinh ra x,y là ra kết quả rồi)
Gọi thời gian vòi 1 chảy riêng đầy bể là x(giờ)
thời gian vòi 2 chảy riêng đầy bể là y(giờ)
(Điều kiện: x>0;y>0)
Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)
Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{6}\left(bể\right)\)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)
Trong 2 giờ, vòi 2 chảy được: \(\dfrac{2}{y}\left(bể\right)\)
Vì khi mở vòi 1 chảy 1 giờ và vòi 2 chảy 1+1=2 giờ thì ta được 1/3 bể nên ta có phương trình:
\(\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{3}\)(2)
Từ (1) và (2) ta sẽ có hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{y}=-\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=6\end{matrix}\right.\)
Vậy: Vòi 1 cần 6 giờ để chảy riêng đầy bể
Vòi 2 cũng cần 6 giờ để chảy riêng đầy bể
Gọi thời gian chảy một mình để đầy bể của vòi 1 là: x ( x > 0 ) ( giờ )
vòi 2 là: y ( y > 0 ) ( giờ )
Trong 1 giờ vòi 1 chảy được là: \(\frac{1}{x}\)bể
2 là: \(\frac{1}{y}\)bể
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}=\frac{6}{35}\)( 1 )
Trong 5 giờ vòi 1 chảy được là: \(\frac{5}{x}\)bể
7 giờ vòi 2 là: \(\frac{7}{y}\)bể
\(\Rightarrow\)\(\frac{5}{x}+\frac{7}{y}=1\)( 2 )
Từ ( 1 ) và ( 2 ) ta có phương trình
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{6}{35}\\\frac{5}{x}+\frac{7}{y}=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=14\end{cases}}\)
Vậy...
Gọi thời gian chảy 1 mình đầy bề của vòi 1 và vòi 2 lần lượt là x và y giờ (x;y>0)
Trong 1 giờ hai vòi lần lượt chảy được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần bể
Do 2 vòi cùng chảy trong 6h đầy bể nên: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)
Hai vòi chảy 2h và khóa vòi 1, để vòi 2 chảy 12 giờ đầy bể nên: \(2\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+12.\dfrac{1}{y}=1\)
\(\Rightarrow\dfrac{2}{x}+\dfrac{14}{y}=1\)
Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{14}{y}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{9}\\\dfrac{1}{y}=\dfrac{1}{18}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=9\\y=18\end{matrix}\right.\)
Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là a,b
Theo đề, ta có: 1/a+1/b=1/12 và 4/a+18/b=1
=>a=28 và b=21
Gọi thời gian vòi một chảy một mình thì đầy bể là \(x\left(x>12\right)\) (giờ)
Thời gian vòi hai chảy một mình thì đầy bể là \(y\left(y>12\right)\) (giờ)
Trong một giờ vòi một chảy được \(\dfrac{1}{x}\) (bể)
Trong một giờ vòi hai chảy được \(\dfrac{1}{y}\) (bể)
Hai vòi cùng chảy vào một bể không có nước thì sau \(12\) giờ thì đầy bể
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\left(1\right)\)
Người ra mở cả hai vòi chảy trong \(4\) giờ được \(4\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{4}{x}+\dfrac{4}{y}\) bể và để vòi một chảy tiếp trong \(14\) giờ nữa thì vòi một chảy được \(\dfrac{14}{x}\) bể
\(\Rightarrow\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{14}{x}=1\)
\(\Rightarrow\dfrac{18}{x}+\dfrac{4}{y}=1\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{18}{x}+\dfrac{4}{y}=1\end{matrix}\right.\)
Giải hệ phương trình trên ta được \(\left\{{}\begin{matrix}x=21\\y=28\end{matrix}\right.\) (thỏa mãn điều kiện)
Vậy thời gian vòi một chảy một mình thì đầy bể là \(21\) giờ, thời gian vòi hai chảy một mình thì đầy bể là \(28\) giờ.