Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\text{Σ}_{cyc}\left(a-b\right)^2\ge0\forall a,b,c\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge\left(ab+bc+ca\right)\)
Dấu "=" khi a = b = c
Day la bdt Svacso dau bang xay ra <=> \(\frac{a}{x}=\frac{b}{y}\)
Quy đồng full
\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge\left(a^2+2ab+b^2\right)xy\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)
lun đúng
Điều kiện: \(-\dfrac{65}{8}\le x\le2\)
\(1+8x+8^2=\sqrt{2-x}\\ \Rightarrow2-x=64x^2+1040x+4225\\ \Leftrightarrow64x^2+1041x+4223=0\\ \Leftrightarrow\left[{}\begin{matrix}x\simeq-7,735\\x\simeq-8,531\end{matrix}\right.\)
Sau mỗi lần xóa ta thấy dấu (-) được giữ nguyên hoặc giảm đi 2, vì thế tính chẵn lẻ của nó không đổi, mà ban đầu có lẻ dấu (-) nên cuối cùng sau khi xóa đi dấu đó là dấu (-)