K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

2,tìm n thuộc n

a)18-2n chia hết cho n

=>n=3;6

b)(n+9) chia hết cho (n+3)

=>n=3

#Học tốt 

16 tháng 8 2019

a) ta có n thì :n => 2n : n=> 18-2n :n=> n thuộc ước(18)={+_1,+_2,+_3,+_6,+_9,+_18}

b) n+9 : n+3 => n+3+6:n+3=> 6:n+3=> n+3 thuộc ước(6)={+_1,+_2,+_3,+_6}

n+31-12-23-36-6
n-2-4-1-50-63-9

vì n thuộc N => n=0,3

c) 2n+3 : n+3 => 2(n+3)-3 : n+3 => n+3 thược ước (-3)={+_1,+_3}

n+31-13-3
n-2-40-6

vì n thuộc N nên n=0

bạn hiểu dấu này : là dấu chia hết nha

24 tháng 10 2018

\(a,n+6⋮n+3\)

\(\Rightarrow n+3+3⋮n+3\)

mà \(n+3⋮n+3\Rightarrow3⋮n+3\)

\(\Rightarrow n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Với n + 3 = 1 => n = -2 

    n + 3 = -1 => n = -4

  n +3 = 3 = > n= 0

n+ 3 = -3 => n= -6 

\(\Rightarrow n\in\left\{-2;-4;0;-6\right\}\)

b, \(2n+9⋮n+2\)

\(2.n+2+7⋮n+2\)

mà \(2\left(n+2\right)⋮n+2\)

\(\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

........ 

bn lm như trên 

24 tháng 10 2018

\(c,2n+7⋮n+1\)

\(\Rightarrow2n+1+6⋮n+1\)

mà \(2.\left(n+1\right)⋮n+1\Rightarrow6⋮n+1\)

\(\Rightarrow n+1\inƯ\left(6\right)=\left\{1;-1;2;-2;6;-6\right\}\)

........ như phần vừa nãy 

\(d,n+3⋮n-1\)

\(\Rightarrow n+4-1⋮n-1\)

\(\Rightarrow n-1+4\)

mà \(n-1⋮n-1\Rightarrow4⋮n-1\)

\(\Rightarrow n\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

......  

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

20 tháng 8 2015

mình giải câu đầu còn 3 câu còn lại bạn tự làm nhé

         a,ta có:n-1chia hết cho n-9

          suy ra n-9+8chia het cho n-9

          suy ra 8 chia het cho n-9

          suy ra n-9 thuoc uoc 8

          suy ra n-9=1=-1=2=-2=4=-4=8=-8

          suy ra n=10=8=11=9=13=11=17=15 (cung co the lap bang)

 

                   

27 tháng 1 2016

a, n thuộc 10;11

 

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

8 tháng 10 2016

a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)

Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3

=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}

b/  \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)

Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5

=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}

Các câu còn lại làm tương tự

27 tháng 9 2015

a) Ta có: n+4 chia hết cho 4.

Suy ra 4 chia hết cho n.Vậy n=1;2

b, 3n+7 chia hết cho n => 7 chia hết n

Vậy n=1

còn nhiều quá 

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)