Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số nguyên tố sinh đôi là 3 và 5
=> 2^n = 4 => 2^ n = 2^2 => n = 2
(mình không chắc đau nha bừa thôi đấy)
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}
Trong 3 số liên tiếp có 1 số chẵn mà 2 số còn lại là lẻ => Số ở giữa chẵn
Trong 3 số liên tiếp có 1 số chia hết cho 3 mà 2 số kia lại là số nguyên tố => số ở giữa chia hết cho 3
=> số đó chia hết cho 6
Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có:
p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).
Hok tot
Giải
. p + (p+2) = 2p + 2 = 2.(p+1)
. p là SNT > 3 \(\Rightarrow\)\(lẻ\Rightarrow p+1\)chẵn
\(\Rightarrow\left(p+1\right)⋮2\) ( 1 )
- Trong 3 STN liên tiếp : p;p+1;p+2 có 1 số \(⋮3\)
Vì p;p+2 là 2 SNT > 6 nên p không\(⋮3\); p+ 2 ko \(⋮\)3
\(\Rightarrow\left(p+1\right)⋮3\) ( 2 )
\(\Rightarrow2\left(p+1\right)⋮12\)
Vậy ..............
+, Nếu p = 2 thì : 3p^2+1 = 13 ; 24p^2+1 = 97 ( tm)
+, Nếu p > 2 => p lẻ => p^2 lẻ => 3p^2 lẻ => 3p^2+1 chẵn nên 3p^2+1 chia hết cho 2
Mà 3p^2+1 > 2 => 3p^2+1 là hợp số
Vậy p = 2
Tk mk nha
Vì n > 2 nên \(2^n-1>2^2-1=3\)nên \(2^n-1\)không chia hết cho 3 (vì 2n - 1 là số nguyên tố)
Xét 3 số tự nhiên liên tiếp \(2^n-1;2^n;2^n+1\)có \(2^n-1\)không chia hết cho 3, \(2^n\)không chia hết cho 3
\(\Rightarrow2^n+1\)phải chia hết cho 3.
Mà \(2^n+1>2^n-1>3\)nên 2n + 1 là hợp số. (đpcm)