Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Theo đề bài, ta có nếu chuyển từ mẫu số lên tử số để phân số \(\frac{51}{101}\) bằng với phân số \(\frac{3}{5}\) thì tổng giữa tử số và mẫu số của phân số \(\frac{51}{101}\) vẫn không thay đổi. Vậy tổng giữa tử số và mẫu số của phân số \(\frac{51}{101}\) là:
51 + 101 = 152
Mẫu số của phân số \(\frac{51}{101}\) sau khi thay đổi là:
152 : (3 + 5) x 5 = 95
Và cần phải chuyển từ mẫu số lên tử số:
101 - 95 = 6 (đơn vị)
\(\Rightarrow\) Cần phải chuyển từ mẫu số lên tử số 6 đơn vị.
\(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{\frac{3}{4}+\frac{3}{24}+\frac{3}{124}}\) + \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{127}}{\frac{3}{7}+\frac{3}{17}+\frac{3}{127}}\)
= \(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{3.\left(\frac{1}{4}+\frac{1}{24}+\frac{1}{124}\right)}\) + \(\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}{3.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}\)
= \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1
A=-1/2*-2/3*-3/4*..*-2013/2014
A=-1*-2*-3*...*-2013/2*3*4*...*2014
A=-1/2014
ta có(-1)^2015=-1
B=-1/2015>-1/2014=A
nên A<B
Ta có:
\(3^3=27\text{≡}1\left(mod13\right)\)
\(\Rightarrow\left(3^3\right)^{33}\text{≡}1^{33}\left(mod13\right)\)
\(\Rightarrow3^{99}\text{≡}1\left(mod13\right)\)
\(\Rightarrow3^{100}\text{≡}3\left(mod13\right)\)
Lại có :
\(\left(3^3\right)^{35}\text{≡}1^{35}\left(mod13\right)\)
\(\Rightarrow3^{105}\text{≡}1\left(mod13\right)\)
\(\Rightarrow3^{100}+3^{105}\text{≡}3+1=4\left(mod13\right)\)
Vậy số dư trong phép chia đó là 4.
a) Ta có:
\(\dfrac{2929-101}{2.2929-404}=\dfrac{29.101-101}{2.29.101-4.101}=\dfrac{101.\left(29-1\right)}{101.\left(2.29-4\right)}=\dfrac{101.28}{101.54}=\dfrac{28}{54}=\dfrac{14}{27}\)
b) Ta có:
\(\dfrac{2.3+4.6+14.21}{3.5+6.10+21.35}=\dfrac{2.3+2.3.2^2+2.3.7^2}{3.5+3.5.2^2+3.5.7^2}=\dfrac{2.3.\left(1+2^2+7^2\right)}{3.5.\left(1+2^2+7^2\right)}=\dfrac{2.3}{3.5}=\dfrac{2}{5}\)