Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^{2014}=x^2\)
\(\Rightarrow x^{2014}-x^2=0\)
\(x^2.\left(x^{2012}-1\right)=0\)
TH1: \(x^2=0\Rightarrow x=0\)
TH2: \(x^{2012}-1=0\Rightarrow x^{2012}=1\Rightarrow x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;0;1\right\}\)
\(2^x+2^{x+2}=32.\left(2^2+1\right)\)
\(\Rightarrow2^x+2^{x+2}=32.5\)
\(\Rightarrow2^x+2^{x+2}=160\)
\(\Rightarrow2^x\left(1+4\right)=160\)
\(\Rightarrow2^x.5=160\)
\(\Rightarrow2^x=160:5=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy x = 5
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
2.2.2.5.5.5.10 = ( 2.5 ) . ( 2.5 ) . ( 2.5 ) . 10 = 10 . 10 . 10 . 10 = 104
2 . 2 . 2 . 2 . 4 . 4 = ( 2.2 ) . ( 2.2 ) . 4 . 4 = 4 . 4 . 4 . 4 = 44
4 . 4 . 8 . 8 = (2 . 2 ) . ( 2.2 ) . ( 2 . 2 . 2 ) . ( 2. 2 . 2 ) = 2 . 2 .2 . 2 .2 . 2 .2 . 2 .2 . 2 = 210
x3 = 125
x = \(\sqrt[3]{125}=5\)
2x + 4.2x = 5.25
2x ( 4 + 1 ) = 25 . 5
2x . 5 = 25 . 5
x = 5
3n : 9 = 37
3n : 32 = 37
3n-2 = 37
n - 2 = 7
n = 7 + 2 = 9
n = { 3 ; 4 ; 5 }
\(x^4\cdot x^7\cdot...\cdot x^{100}\)
\(=x^{4+7+...+100}\)
\(=x^{52\cdot33}=x^{1716}\)
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}\)
Ta có : \(x^1\cdot x^2=x^{1+2}=x^3\)
Tương tự : \(x^1\cdot x^2\cdot x^3=x^{1+2+3}=x^6\)
Áp dụng vào bài toán :
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}\)
\(\Rightarrow x^{1+2+3+...+2006}=x^{2013021}\)
24.x - 3.5x = 52 - 24
=> 16.x - 15x = 25 - 16
=> x = 9
32.x + 22.x = 26.22 - 13
=> 9.x + 4.x = 26.4 - 13
=> 13.x = 91
=> x = 7
@Huỳnh Quang Sang bạn giải thích hộ mình tại sao lại ra được kết quả như vậy ko ạ, mình chưa hiểu rõ lắm, mong bạn giải đáp
\(2^{x+1}.2^{2014}=2^{2016}\Leftrightarrow2^{x+1+.2014}=2^{2016}\Rightarrow x+2015=2016\Rightarrow x=1\)