Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x.16^2=1024\)
\(2^x=1024:16^2\)
\(2^x=1024:256\)
\(2^x=4\)
\(2^x=2^2\)
\(\Rightarrow x=2\)
vay \(x=2\)
2x . 162 = 1024
\(\Rightarrow\)2x . 256 = 1024
\(\Rightarrow\)2x = 1024 : 256 = 4
\(\Rightarrow\)2x = 22
\(\Rightarrow\)x = 2
2xx15 = 1024
2x = 1024 : 15
2x = ???
Hình như đề sai rồi bn
+) \(x^2=121\)
\(\Rightarrow\orbr{\begin{cases}x^2=11^2\\x^2=\left(-11\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)
Vậy x = 11 hoặc x = -11
+) \(2^{x+3}=1024\)
\(\Rightarrow2^{x+3}=2^{10}\)
\(\Rightarrow x+3=10\)
\(\Rightarrow x=10-3\)
\(\Rightarrow x=7\)
Vậy x = 7
+) \(5^{x+1}=625\)
\(\Rightarrow5^{x+1}=5^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=4-1\)
\(\Rightarrow x=3\)
Vậy x = 3
_Chúc bạn học tốt_
1024 : ( 17 x 25 + 15 x 25 )
= 1024 : [( 17 + 15 ) x 25 ]
= 1024 : ( 32 x 25 )
= 210 : 210
= 1
Có: \(\dfrac{2^x}{2^{2012}}=1024\)
\(\Rightarrow\dfrac{2^x}{2^{2012}}=2^{10}\Rightarrow2^x=2^{10}\cdot2^{2012}=2^{2022}\)
\(\Rightarrow x=2022\)
b, 2 + 4 + 6 +.....+2x =210
=>2*(1+2+3+....+x) =210
=> 1+2+3+....+x = 105
=> (x+1)*x : 2 = 105
=> (x+1)*x = 210
=> (x+1)*x = 15*14
=>x=14
c) [(x - 300)^2 - 280 ] * 2 = 19440
=> (x - 300)^2 - 280 = 9720
=> (x - 300)^2 = 10000 =1002
=> x - 300 =100
=> x=400
a, 3x-1+ 5* 3x-1 = 162
3x-1 * (5 + 1) = 162
3x-1 * 6 = 162
3x-1 = 27 = 33
=> x-1=3
=> x=4
\(\left(x+1\right)^3=27\)
\(\left(x+1\right)^3=3^3\)
\(\Rightarrow x+1=3\)
\(x=2\)
\(\left(x+1\right)^3=27\)
\(< =>\left(x+1\right)^3=3.3.3=3^3\)
\(< =>x+1=3< =>x=3-1=2\)
\(\left(2x+3\right)^3=9.81\)
\(< =>\left(2x+3\right)^3=9.9.9\)
\(< =>\left(2x+3\right)^3=9^3\)
\(< =>2x+3=9< =>2x=6\)
\(< =>x=\frac{6}{2}=3\)
\(2^x\cdot16^2=1024\)
\(\Leftrightarrow2^x=4\)
hay x=2
2x⋅162=10242x⋅162=1024
⇔2x=4⇔2x=4
hay x=2