K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 9 2020

2.

\(0\le\left|sinx\right|\le1\Rightarrow1\le y\le3\)

Min và max lần lượt là 3 và 1

3.

\(cos\left(x-\frac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

8.

\(y=\frac{1}{2}+\frac{1}{2}cos2x+2cos2x=\frac{1}{2}+\frac{5}{2}cos2x\le\frac{1}{2}+\frac{5}{2}.1=3\)

15.

Nó đi qua vô số điểm nên ko có 4 đáp án để chọn thì ko ai có thể trả lời câu này cho bạn cả

18.

\(y=\frac{sinx+2cosx+1}{sinx+cosx+2}\Leftrightarrow y.sinx+y.cosx+2y=sinx+2cosx+1\)

\(\Leftrightarrow\left(y-1\right)sinx+\left(y-2\right)cosx=1-2y\)

\(\left(y-1\right)^2+\left(y-2\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow2y^2+2y-4\le0\Rightarrow-2\le y\le1\)

\(\Rightarrow y_{max}=1\)

NV
14 tháng 9 2020

8.

\(y=\left(cosx+1\right)^2-1\ge-1\Rightarrow y_{min}=-1\)

\(y=\left(cosx-1\right)\left(cosx+3\right)+3\le3\Rightarrow y_{max}=3\)

10.

\(y=2-\left(cosx+1\right)^2\le2\Rightarrow y_{max}=2\)

14.

Hàm tuần hoàn với chu kì \(T=\pi\)

15.

Đáp án A đúng

20.

\(-1\le sin\left(\frac{x}{2}+\frac{\pi}{7}\right)\le1\Rightarrow-5\le y\le-1\)

\(y_{max}=-1\) ; \(y_{min}=-5\)

NV
15 tháng 9 2020

8.

\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)

Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)

\(y_{min}=-2;y_{max}=3\)

10.

\(y=2-\left(cosx+1\right)^2\le2\)

\(y_{max}=2\)

14.

Hàm tuần hoàn với chu kì \(T=\pi\)

25 tháng 2 2017

Chọn B

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

2.

$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$

$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$

Vì: $0\leq \sin ^22x\leq 1$

$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$

Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$

 

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

3.

$0\leq |\sin x|\leq 1$

$\Rightarrow 3\geq 3-2|\sin x|\geq 1$

Vậy $y_{\min}=1; y_{\max}=3$

14 tháng 8 2018

NV
15 tháng 7 2020

4.

\(-1\le sinx\le1\Rightarrow\sqrt{2}\le\sqrt{sinx+3}\le2\)

\(\Rightarrow\sqrt{2}-1\le y\le1\)

12.

ĐKXĐ: \(sinx+1\ne0\Rightarrow sinx\ne-1\Rightarrow x\ne-\frac{\pi}{2}+k2\pi\)

20.

\(y=tanx\) ko xác định khi \(cosx=0\Leftrightarrow x=\frac{\pi}{2}+k\pi\)

22.

\(y_{min}=y\left(\frac{\pi}{4}\right)=cos\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)