Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\begin{cases}5>1;3>1\Rightarrow\log_53>0\\15>1;4>1\Rightarrow\log_{15}4>0\\0< \frac{1}{3}< 1;\frac{7}{2}>1\Rightarrow\log_{\frac{1}{3}}\frac{14}{5}< 0\\0< 0,3< 1;\frac{7}{2}>1\Rightarrow\log_{0,3}\frac{7}{2}< 0\end{cases}\)
\(\Rightarrow A=\frac{\log_53.\log_{15}4}{\log_{\frac{1}{3}}\frac{14}{5}\log_{0,3}\frac{7}{2}}>0\)
\(A=17\frac{2}{31}-\left(\frac{15}{17}+6\frac{2}{31}\right)=\left(17\frac{2}{31}-6\frac{2}{31}\right)-\frac{15}{17}=11-\frac{15}{17}=10+\left(1-\frac{15}{17}\right)=10\frac{2}{17}\)
\(B=\left(31\frac{6}{13}-36\frac{6}{13}\right)+5\frac{9}{41}=-5+5\frac{9}{41}=\frac{9}{41}\)
C=\(\left(27\frac{51}{59}-7\frac{51}{59}\right)+\frac{1}{3}=20+\frac{1}{3}=20\frac{1}{3}\)
\(D=\left(13\frac{29}{31}-2\frac{28}{31}\right)+\left(4-3\frac{7}{8}\right)=11\frac{1}{31}+\frac{1}{8}=11\frac{8+31}{31.8}=11\frac{39}{248}\)
Đk: x khác 0;
pt \(\Leftrightarrow-9\cdot2^{\frac{1}{x}}-5\cdot2^{\frac{1}{x}}\cdot3^{\frac{1}{x}}+4\cdot3^{\frac{2}{x}}=0\)
\(\Leftrightarrow4\cdot\left(3^{\frac{1}{x}}\right)^2-5\cdot2^{\frac{1}{x}}\cdot3^{\frac{1}{x}}-9\cdot2^{\frac{1}{x}}=0\)
xem pt trên là pt bậc hai ẩn 31/x, ta có: \(\Delta=\left(5\cdot2^{\frac{1}{x}}\right)^2-4\cdot4\cdot\left(-9\cdot2^{\frac{2}{x}}\right)=169\cdot2^{\frac{1}{x}}\)
\(3^{\frac{1}{x}}=\frac{5\cdot2^{\frac{1}{x}}-13\cdot2^{\frac{1}{x}}}{2\cdot4}=-2^{\frac{1}{x}}\) (loại)
\(3^{\frac{1}{x}}=\frac{5\cdot2^{\frac{1}{x}}+13\cdot2^{\frac{1}{x}}}{2\cdot4}=\frac{9}{4}\cdot2^{\frac{1}{x}}\Leftrightarrow3^{\frac{1}{x}-2}=2^{\frac{1}{x}-2}\Leftrightarrow\frac{1}{x}-2=0\Leftrightarrow x=\frac{1}{2}\)
\(B=\frac{a^{\frac{1}{4}}-a^{\frac{9}{4}}}{a^{\frac{1}{4}}-a^{\frac{5}{4}}}-\frac{b^{-\frac{1}{2}}-b^{\frac{3}{2}}}{b^{\frac{1}{2}}+b^{-\frac{1}{2}}}=\frac{a^{\frac{1}{4}}\left(1-a^2\right)}{a^{\frac{1}{4}}\left(1-a\right)}-\frac{b^{-\frac{1}{2}}\left(1-b^2\right)}{b^{-\frac{1}{2}}\left(1-b\right)}\)
\(=\left(1+a\right)-\left(1-b\right)=a+b=2013-\sqrt{2}+\sqrt{2}-2015=1\)
a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)
b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)
c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)
d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)
\(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)
\(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)
\(B=25^{\frac{1}{2}+\frac{1}{9}\log_{\frac{1}{2}}27+\log_{125}81}=\left(5^2\right)^{\frac{1}{2}+\frac{1}{9}\log_{5^{-1}}3^3+\log_{5^3}3^4}\)
\(=5^{1-\frac{2}{3}\log_53+\frac{8}{3}\log_53}=5^{1+2\log_53}=5.5^{\log_53^2}=5.9=45\)
\(2-\frac{13}{9}:\frac{5}{14}-\frac{5}{9}.\frac{14}{5}\)
\(=2-\frac{13}{9}.\frac{14}{5}-\frac{5}{9}.\frac{14}{5}\)
\(=2-\frac{14}{5}.\left(\frac{13}{9}-\frac{5}{9}\right)\)
\(=2-\frac{14}{5}.\frac{8}{9}\)
\(=2-\frac{112}{45}=\frac{90}{45}-\frac{112}{45}=\frac{-22}{45}\)