Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AD là phân giác BAC => DAC = DAB = BAC : 2 hay 2DAC = 2DAB = BAC
Vì CE là phân giác BCA => BCE = ECA = BCA : 2 hay 2BCE = 2ECA = BCA
Xét △ABC vuông tại B có: BAC + BCA = 90o (2 góc nhọn trong △ vuông)
=> 2DAC + 2ECA = 90o => DAC + ECA = 45o
Xét △ICA có: ICA + IAC + CIA = 180o (tổng 3 góc trong tam giác)
=> 45o + CIA = 180o => CIA = 135o
b, Xét △ABC có BCx là góc ngoài của △ tại đỉnh C, ta có: BCx = CBA + BAC => BCx = 90o + BAC
Vì CK là phân giác BCx \(\Rightarrow\frac{\widehat{BCx}}{2}=\frac{90^o+\widehat{BAC}}{2}\)\(\Rightarrow\widehat{BCK}=45^o+\widehat{DAC}\)
Xét △KCA có: CKA + KCA + CAK = 180o (tổng 3 góc trong △)
=> CKA + KCD + DCI + ICA + CAK = 180o
=> CKA + 45o + DAC + DCI + ICA + CAK = 180o
=> CKA + (DAC + ICA) + (DCI + CAK) = 135o
=> CKA + 45o + 45o = 135o
=> CKA = 45o
M P N 3 4 A C G
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
a/ có: AB = AC
BD = CE
=> AB / BD = AC / CE
theo định lí đảo Thales ta suy ra: DE // BC (đpcm)
b/ có: MBD và NCE là hai tgiác vuông có cạnh huyền bằng nhau là:
BD = CE.
mặt khác do tính chất góc đối đỉnh ta có:
gócMBD = gócABC; gócNCE = gócACB
mà gócABC = gócACB (ABC là tgiác cân)
=> gócMBD = gócNCE
=> tgiácMBD = tgiácNCE
=> DM = EN (đpcm)
c/ Gọi K là trung điểm BC, do ABC là tgiác cân nên AK vuông BC (đường trung tuyến cũng là đường cao)
có BK = KC
mà MB = NC (tgiác MBD = tgiác NCE)
=> MB + BK = KC + CN
=> MK = KN
hiển nhiên AK vuông MN
tgiác AMN có AK vừa đường cao vừa trung tuyến nên là tgiác cân.
d/ IB cắt AM tại P, IC cắt AN tại Q
ta dể cm ABM và ACN là hai tgiác bằng nhau (có ba cạnh tương ứng bằng nhau đôi một)
nên hai đường cao tương ứng bằng nhau, tức là:
BP = CQ
=> tgiác PAB = tgiác QAC (hai tgiác vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
=> AP = AQ
xét hai tgiác PAI có QAI là hai tgiác vuông có cạnh huyền:AI chung và
AP = AQ
=> tgiác API = tgiác QAI
=> góc PAI = góc QAI
mà do ta có hai tgiác bằng nhau nên:
góc PAB = góc QAC
=>góc BAI = góc CAI
Vậy: AI là tia phân giác của góc BAC và góc MAN.
á, mik nhấn chọn nhầm bài, mn cứ mặc kệ nó đi nha