Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
a: \(\dfrac{6}{7}< 1< \dfrac{11}{10}\)
b: -5/17<0<2/7
c: \(\dfrac{419}{-723}< 0< \dfrac{-699}{-313}\)
a) Ta có: BCNN(15,10) = 30 nên ta chọn mẫu số chung là 30
\(\frac{11}{15}+\frac{9}{10}=\frac{22}{30}+\frac{27}{30}=\frac{49}{30}\)
b) Ta có: BCNN(6,9,12) = 36 nên ta chọn mẫu số chung là 36
\(\frac{5}{6} + \frac{7}{9} + \frac{{11}}{{12}} = \frac{{30}}{{36}} + \frac{{28}}{{36}} + \frac{{33}}{{36}} = \frac{{91}}{{36}}\)
c) Ta có: BCNN(24,21) = 168 nên ta chọn mẫu số chung là 168
\(\frac{7}{{24}} - \frac{2}{{21}} = \frac{{49}}{{168}} - \frac{{16}}{{168}} = \frac{{33}}{{168}}=\frac{11}{56}\)
d) Ta có: BCNN(36,24) = 72 nên ta chọn mẫu số chung là 72
\(\frac{{11}}{{36}} - \frac{7}{{24}} = \frac{{22}}{{72}} - \frac{{21}}{{72}} = \frac{1}{{72}}\)
1. a) Ta có BCNN(12, 15) = 60 nên ta lấy mẫu chung của hai phân số là 60.
Thừa số phụ:
60:12 =5; 60:15=4
Ta được:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\)
b) Ta có BCNN(7, 9, 12) = 252 nên ta lấy mẫu chung của ba phân số là 252.
Thừa số phụ:
252:7 = 36; 252:9 = 28; 252:12 = 21
Ta được:
\(\frac{2}{7} = \frac{{2.36}}{{7.36}} = \frac{{72}}{{252}}\)
\(\frac{4}{9} = \frac{{4.28}}{{9.28}} = \frac{{112}}{{252}}\)
\(\frac{7}{{12}} = \frac{{7.21}}{{12.21}} = \frac{{147}}{{252}}\)
2. a) Ta có BCNN(8, 24) = 24 nên:
\(\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\)
b) Ta có BCNN(12, 16) = 48 nên:
\(\frac{7}{{16}} - \frac{5}{{12}} = \frac{{7.3}}{{16.3}} - \frac{{5.4}}{{12.4}} = \frac{{21}}{{48}} - \frac{{20}}{{48}} = \frac{1}{{48}}\).
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{1454}{323}+\frac{35}{43}+6\)
\(=5,...+6\)
\(=11,...\)
\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
\(VayA=\sqrt{3}-2\)
1
a, \(\frac{471}{532}\)và \(\frac{471471}{532532}\)
ta thấy phân số thứ hai là \(\frac{471471}{532532}\)
ta thấy có 2 số 471
có 2 số 532 nên ta rút gọn thành phân số \(\frac{471}{532}\)
nên \(\frac{471}{532}\)= \(\frac{471471}{532532}\)
b ,
ta sẽ tìm PHÂN SỐ TRUNG GIAN .
Phân số trung gian là phân số nằm giữa 2 phân số nào đó
Cách chọn phân số trung gian:
+ Nhận thấy ở phân số thứ nhất có tử số bé hơn mẫu số và ở phân số thứ hai có tử số lớn hơn mẫu số hoặc ngược lại thì ta so sánh hai phân số đó với số trung gian là 1.
+ Nhận thấy tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai hoặc ngược lại thì ta so sánh với phân số trung gian là phân số có tử số bằng tử số của phân số thứ nhất, có mẫu số bằng mẫu số của phân số thứ hai hoặc ngược lại.
+ Trong trường hợp hiệu của tử số của phân số thứ nhất với tử số của phân số thứ hai và hiệu của mẫu số phân số thứ nhất với mẫu số của phân số thứ hai có mối quan hệ với nhau về tỉ số ( ví dụ: gấp 2 hoặc 3 lần,..) thì ta nhân cả tử số và mẫu số của phân số có tử số bé hơn lên một số lần sao cho hiệu giữa hai tử số và hiệu giữa hai mẫu số là nhỏ nhất. Sau đó ta tiến hành chọn phân số trung gian như trên.
1 ta sẽ so sánh \(\frac{13}{15}\)và \(\frac{23}{15}\)
thì ta thấy \(\frac{13}{15}\)< \(\frac{23}{15}\)
như vậy là ta đã ra dấu < nhưng nếu muốn chắc ăn thì ta tiếp tục so sánh phân số thứ hai
ok
c ,
d) \(\frac{7}{14}+\frac{9}{36}\)
\(=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
4) \(\frac{6}{7}=\frac{6.10}{7.10}=\frac{60}{70}\)
\(\frac{11}{10}=\frac{11.7}{10.7}=\frac{77}{70}\)
ta thay \(60< 77\)nen \(\frac{6}{7}< \frac{11}{10}\)
nhung cau khac lam tuong tu nhe