Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Học cùng lớp thì phải quen nhau hết nên n người đều quen với n-1 người
mình nghĩ làm như thế này:
ta chia n người đó vào n phòng tương ứng từ 0 đến n-1 phòng.
mà n chia n-1=1(dư 1 ) { cho phép chia này tớ nghĩ thế }.vay theo nguyên lí dirichle trong phòng có n người luôn tìm được 2 người có số người quen bằng nhau
1)
đặt 3 chữ số còn lại là a.
Ta có tổng các chữ số của số cần tìm là 5+7+3a⋮3
Vì số này là số chính phương nên phải chia hết cho 9.
xét các trường hợp 0≤a≤9(a≠5;7)=>a ϵ(2;8)
Vì số chính phương có tận cùng là 0;1;4;5;6;9 suy ra số cần tìm phải có tận cùng là 5, cho nên hai chứ số tận cùng nhất thiết phải là 25.
Từ đây suy ra a=2.
Vậy số đó là: 27225 ( t/m đề bài 1 c/s 5, 1 c/s 7 và 3 c/s 2)
Khi gặp nhau người thứ 2 đi đươc là :
396 - 216 = 180 (km)
Tỉ lệ vận tốc người thứ hai so với người thứ nhất :
180 : 216 = 5/6.
Hiệu số phần là:
6 -5 = 1
Hiệu vận tốc :
216 - 180 = 36 (km/giờ)
Gọi số ngày là A ta có : A x 1 = 36 : A
Vậy số ngày là 6 ngày.
Một ngày người thứ nhất đi là :
216 : 6 = 36 (km)
Một ngày người thứ hai đi là :
180 : 6 = 30 (km)
Lấy 12 số này chia cho 11 ta được 10 số dư trong các số 0;1;2;3;4;5;6;7;8;9. Theo nguyên tắc Direchlet thì phải có ít nhất có hai số có cùng số dư. Nên hiệu hai số này chia hết 12. Khi đó chúng có 2 cs tận cùng giống nhau
2 s sau họ gặp nhau chính là thời gian mà quả bóng đi
Quãng đường quả bóng đi là: 2 .16 = 32 m
Một người có thể bắt tay tối đa với \(0,1,2,...,19\) người khác. Nhưng nếu có người bắt tay với 0 người thì sẽ không thể có người bắt tay với 19 người. Ngược lại, nếu có người bắt tay với 19 người thì sẽ không có ai bắt tay với 0 người.
Do đó, số các số cái bắt tay khác nhau có thể xảy ra là 19. Nhưng do có 20 người nên theo nguyên lí Dirichlet, chắc chắn sẽ tồn tại 2 người có số cái bắt tay là như nhau.