Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông ABC, theo hệ thức lượng: \(BD=\frac{c^2}{a}.\)
Xét tam giác vuông BDA, ta có: \(m=EB=\frac{BD^2}{BA}=\frac{c^3}{a^2}\)
Hoàn toàn tương tự: \(n=\frac{b^3}{a^2}\)
Vậy thì \(a.m.n=\frac{b^3.c^3}{a^3}\)
Lại có: \(bc=ah\Rightarrow\frac{bc}{a}=h\Rightarrow\frac{b^3c^3}{a^3}=h^3\Rightarrow a.m.n=h^3.\)
a) Ta có : AD2 = BD.DC
=> AD4 = BD2.CD2 (1)
Xét tam giác ABD có :
BD2 = BE.AB(2)
Xét tam giác AHC có :
CD2 = FC.AC(3)
Thay (2)(3) vào (1) có
AD4 = BE.AB.FC.AC= BE.FC.(AB.AC)
=> AD4 = BE.FC.BC.AD ( AB.AC = BC.AD)
Chia 2 vế cho AD có :
=> AD3 =BE.FC.BC
a) Ta có A, E, F, K, H cùng thuộc đường tròn đường kính AH.
b) Ta có \(\widehat{AMN}=90^o-\widehat{OAB}=90^o-\dfrac{180^o-\widehat{AOB}}{2}=\dfrac{\widehat{AOB}}{2}=\widehat{ACB}\).
Suy ra tứ giác BMNC nội tiếp và \(\Delta SMB\sim\Delta SCN\left(g.g\right)\) nên \(SM.SN=SB.SC\).
c) Ta có \(\widehat{QCB}=\widehat{QAB}=\widehat{HCB};\widehat{QBC}=\widehat{HBC}\) nên Q, H đối xứng với nhau qua BC.
Mà S thuộc BC nên SH = SQ.
Ta lại có \(\widehat{SHB}=\widehat{BHF}-\widehat{MHF}=\widehat{BAC}-\left(90^o-\widehat{AMH}\right)=\widehat{BAC}+\widehat{ACB}-90^o=90^o-\widehat{ABC}=\widehat{SCH}\Rightarrow\Delta SHB\sim\Delta SCH\left(g.g\right)\Rightarrow SQ^2=SH^2=SB.SC\).
d) I là điểm nào vậy bạn?
a: Xét (O) có
ΔAHF nội tiếp
AH là đường kính
Do đó; ΔAHF vuông tại F
Suy ra: HF\(\perp\)AB
mà CH\(\perp\)AB
nên C,H,F thẳng hàng
b: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BEFC là tứ giác nội tiếp
a) Ta có BFC = 90* ( góc nội tiếp chắn nửa đường tròn )
=> AB vuông góc CF
BEC = 90* ( góc nội tiếp chắn nửa đường tròn )
=> AC vuông góc BE
Tam giác ABC có BE, CF là đường cao ( AB vuông góc CF tại F và AC vuông góc BE tại E )
Mà BE và CF cắt nhau tại H
Suy ra H là trực tâm tam giác ABC
=> AH vuông góc BC tại D
AH . AD = AE . AC
Xét tam giác AHE và ADC
AEH = ADC = 90*
góc A : góc chung
Vậy tam giác AEH đồng dạng tam giác ADC
=> \(\frac{AE}{AD}\)=\(\frac{AH}{AC}\)
=> AE . AC = AD . AH
b) Gợi ý nhé bạn
Ta chứng minh tứ giác BFHD nội tiếp
=> DFH = HBD
Mà HBD = CFE ( cùng chắn CE )
Nên DFH = CFE
=> FC là phân giác góc EFD
=> DFE = 2 CFE
Mà EOC = 2 CFE ( góc ở tâm và góc nội tiếp cùng chắn cung CE )
Suy ra DFE = EOC
=> Tứ giác EODF nội tiếp ( góc trong = góc đối ngoài )
c) Tứ giác EODF nội tiếp
=> EDF = EOF
Mà EOF = 2 ECF ( góc ở tâm và góc nội tiếp cùng chắn EF )
Nên EDF = 2 ECF
Tam giác DFL cân tại D
=> EDF = 2 FLD = 2 FLE
Mà EDF = 2 ECF (cmt)
Nên FLE = ECF
=> Tứ giác EFCL nội tiếp
Mà tam giác CEF nội tiếp (O)
=> L thuộc (O)
Tam giác BLC nội tiếp (O). Có BC là đường kính
Suy ra tg BLC vuông tại L
=> BLC = 90*