Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
BC=6,4+3,6=10(cm)
ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC
=>AB^2=3,6*10=36; AC^2=6,4*10=64
=>AB=6cm; AC=8cm
b: ΔABC vuông tại B có BH là đường cao
nên AH*AK=AB^2
ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2
=>AH*AK=BH*BC
c: Xét ΔAEK vuông tại E và ΔAHC vuông tại H có
góc EAK chung
=>ΔAEK đồng dạng với ΔAHC
=>AE/AH=AK/AC
=>AE/AK=AH/AC
Xét ΔAEH và ΔAKC có
AE/AK=AH/AC
góc EAH chung
=>ΔAEH đồng dạng với ΔAKC
=>\(\dfrac{EH}{KC}=\dfrac{AH}{AC}=\dfrac{3}{5}\)
=>HE=3/5KC
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)