Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác IBM và tam giác MNI ta có
MI=MI canh chung
BI= MN (gt)
góc MIB = góc IMN ( 2 góc so letrong và AB//MN)
-> tam giac IBM = tam giac MNI (c-g-c)
-> góc BMI = góc MIN
mà 2 góc o vi tri sole trong
nên IM //AC
MN // AB nên ∠NMC=∠ABC∠NMC=∠ABC (đồng vị)
ΔIBM=ΔNMCΔIBM=ΔNMC(c. g. c) nên ∠IMB=∠ACB.∠IMB=∠ACB.Mà hai góc này ở vị trí đồng vị nên IM // AC.
TA CÓ:
IM là cạnh chung
BI=MN(gt)
góc MIB=góc IMN (AB//MN)
TAM giác IBM=Tam giác INM(c-g-c)
góc BMI=góc MIN
suy ra IM//AC
Xét tam giác IBM và tam giác INM ta có :
IM cạnh chung
BI = MN ( gt )
góc MIB = góc IMN ( so le trong , AB // MN )
=> tam giác IBM = tam giác INm ( c-g-c )
=> góc BMI = góc MIn ( ở vị trí so le trong )
=> IM // AC ( đpcm )
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H