Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=0 và y=3 vào y=(m-1)x+m-5, ta được:
\(0\cdot\left(m-1\right)+m-5=3\)
=>m-5=3
=>m=8
b: Thay x=-1 và y=0 vào y=(m-1)x+m-5, ta được:
\(-\left(m-1\right)+m-5=0\)
=>-m+1+m-5=0
=>-4=0(vô lý)
c: Thay x=0 và y=0 vào y=(m-1)x+m-5, ta được:
\(0\left(m-1\right)+m-5=0\)
=>m-5=0
=>m=5
em mới lớp 8 nên làm đc mỗi câu 2 :(
2. pt có nghiệm <=> Δ' ≥ 0
<=> ( -m - 2 )2 - ( m2 + 4m - 12 ) ≥ 0
<=> m2 + 4m + 4 - m2 - 4m + 12 ≥ 0
<=> 16 ≥ 0 ( đúng với mọi m )
Vậy với mọi m thì pt có nghiệm
Khi đó theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=m^2+4m-12\end{matrix}\right.\)
| x1 + x2 | ≤ 6
<=> | x1 + x2 |2 ≤ 36
<=> ( x1 + x2 )2 ≤ 36
<=> x12 + 2x1x2 + x22 ≤ 36
<=> ( x1 + x2 )2 - 2x1x2 ≤ 36
<=> ( 2m + 4 )2 - 2( m2 + 4m - 12 ) ≤ 36
<=> 4m2 + 16m + 16 - 2m2 - 8m + 24 ≤ 36
<=> 2m2 + 8m - 4 ≤ 0
<=> m2 + 4m - 2 ≤ 0
<=> ( m + 2 )2 - 6 ≤ 0
<=> ( m + 2 - √6 )( m + 2 + √6 ) ≤ 0
<=> -2 - √6 ≤ m ≤ - 2 + √6
Vậy ...
a: Thay x=0 và y=2 vào (d), ta được:
a=2
b: Thay x=-1 và y=0 vào (d), ta được:
\(-\left(a-2\right)+a=0\)
\(\Leftrightarrow2=0\)(vô lý)
a: Bạn bổ sung đề đi bạn
b: thay x=-3 và y=0 vào (d), ta được:
\(-3\left(2m+1\right)-m+3=0\)
=>-6m-3-m+3=0
=>-7m=0
=>m=0
d: y=(2m+1)x-m+3
=2mx+x-m+3
=m(2x-1)+x+3
Tọa độ điểm cố định mà (1) luôn đi qua là:
\(\left\{{}\begin{matrix}2x-1=0\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3+\dfrac{1}{2}=\dfrac{7}{2}\end{matrix}\right.\)
a, gọi điểm hàm số (1) luôn đi qua là A(xo,yo) thì xo,yo thỏa mãn (1)
\(=>yo=\left(a-1\right)xo+a< ->a.\left(xo+1\right)-\left(xo+yo\right)=0\)
\(=>\left\{{}\begin{matrix}xo+1=0\\xo+yo=0\end{matrix}\right.\)=>xo=-1,yo=1 vậy.....
b,\(=>x=0,y=3=>\left(1\right):a=3\)(tm)
c,\(=>x=-2,y=0=>\left(1\right):0=\left(a-1\right)\left(-2\right)+a=>a=2\left(tm\right)\)
\(=>y=x+2\) cho x=0=>y=2=>A(0;2)
cho y=0=>x=-2=>B(-2;0)
gọi OH là khoảng cách từ gốc tọa độ đến đồ thị hàm số(1)
\(=>\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=>\dfrac{1}{OH^2}=\dfrac{1}{2^2}+\dfrac{1}{\left(-2\right)^2}=>OH=....\)
m