Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau tách câu hỏi ra cho dễ nhìn nhé
a/ Tìm M=?m
\(F_{hd1}=\dfrac{Gm_1m'}{r^2};F_{hd2}=\dfrac{Gm_2m'}{r^2};F_{hd3}=\dfrac{Gm_3m'}{r^2}\)
\(\sum\overrightarrow{F}=\overrightarrow{F_{hd1}}+\overrightarrow{F_{hd2}}+\overrightarrow{F_{hd3}}\)
\(\sum\overrightarrow{F}=\overrightarrow{0}\Rightarrow\overrightarrow{F_{hd1}}+\overrightarrow{F_{hd3}}=-\overrightarrow{F_{hd2}}\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{F_{hd13}}\uparrow\downarrow\overrightarrow{F_{hd2}}\left(t/m\right)\\F_{hd13}=F_{hd2}\end{matrix}\right.\)
\(\Rightarrow F_{hd13}=F_{hd2}\Leftrightarrow\sqrt{F_{hd1}^2+F_{hd3}^2+2F_{hd1}.F_{hd3}.\cos\left(\widehat{F_{hd1};F_{hd3}}\right)}=F_{hd2}\)
\(\Leftrightarrow\sqrt{F_{hd1}^2+F_{hd3}^2+2F_{hd1}.F_{hd3}.\cos120^0}=F_{hd2}\)
\(\Leftrightarrow\left(\dfrac{Gm_1m'}{r^2}\right)^2+\left(\dfrac{Gm_3m'}{r^2}\right)^2-\left(\dfrac{Gm_1m'}{r^2}\right).\left(\dfrac{Gm_3m'}{r^2}\right)=\left(\dfrac{Gm_2m'}{r^2}\right)^2\)
\(\Leftrightarrow m_1^2+m_3^2-m_1m_3=m_2^2\Leftrightarrow M^2+m^2-M.m=m^2\)
\(\Leftrightarrow M\left(M-m\right)=0\Leftrightarrow M=m\)
Dễ thấy, nếu O nằm giữa G và B thì thanh không thể cân bằng nên O nằm giữa A và G. Quy tắc mômen lực đối với trục qua O:
Chọn đáp án B
Gọi
F h d 1 → là lực hấp dẫn giữa m 1 và m
F h d 2 → là lực hấp dẫn giữa m 2 và m.
+ Theo đề bài, ta có:
(1)
+ Từ hình vẽ ta thấy: (2)
\(\dfrac{F}{F'}=\dfrac{G\cdot\dfrac{m_1m_2}{r^2}}{G\cdot\dfrac{m_1m_2}{\left(2r\right)^2}}=\dfrac{\dfrac{1}{1}}{\dfrac{1}{4}}=4\Rightarrow F'=0,25F\)
Chọn C
Dễ thấy, nếu O nằm giữa G và B thì thanh không thể cân bằng nên O nằm giữa A và G. Quy tắc mômen lực đối với trục qua O:
gọi khoảng cách từ m đến m1 là x
khoảng cách từ m đến m2 là 0,1-x
\(F_{hd1}=F_{hd2}\) và m1=9m2
\(\Rightarrow\)\(\dfrac{G.m.m_1}{x^2}=\dfrac{G.m.m_2}{\left(0,1-x\right)^2}\)\(\Rightarrow x=0,075\)m
vậy m cách m1 một khoảng x=0,075m