K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

=>ΔCDA đồng dạng với ΔCEB

b: Xét ΔIEA vuông tại E và ΔIDB vuông tại D có

góc EIA=góc DIB

=>ΔIEA đồng dạng với ΔIDB

=>IE/ID=IA/IB

=>IE*IB=ID*IA

25 tháng 5 2020

Ôn tập: Tam giác đồng dạng
a. C/m: ΔAHE ∽ ΔBHD

Xét ΔAHE và ΔBHD có:

\(\widehat{AHE}=\widehat{BHD}\)(Đối đỉnh)

\(\widehat{AEH}=\widehat{BDH}=90^0\)

=> ΔAHE ∽ ΔBHD (g.g)
b. C/m: ΔADC ∽ ΔBEC

\(\widehat{C}\) chung

\(\widehat{ADC}=\widehat{BEC}=90^0\)

=> ΔADC ∽ ΔBEC (g.g)

c) C/m: AC.EC=DC.BC

\(\frac{AC}{DC}=\frac{BC}{EC}\)( Vì ΔADC ∽ ΔBEC )

=> AC.EC=DC.BC

d) AH là đường trung tuyến của \(\Delta ABC\)

AC=AB=10 cm

\(\Rightarrow DC=\frac{1}{2}BC=\frac{1}{2}.12=6\left(cm\right)\)

Vì AC.EC=DC.BC

\(\Rightarrow10.EC=6.12\)

\(\Rightarrow EC=7,2\left(cm\right)\)

25 tháng 5 2020

A B C H D 1 2

a, Xét \(\Delta AHE\)\(\Delta BHD\) ta có :

góc H2 = góc H1 ( đối đỉnh )

góc AEH = góc HDB (=90o)

\(\Delta AHE\) \(\Delta BHD\) ( g-g)

b, Xét \(\Delta ADC\)\(\Delta BEC\) ta có :

góc C CHUNG

góc BEC = góc ADC ( =90o)

\(\Delta ADC\) \(\Delta BEC\) ( g-g )

c, Vì \(\Delta ADC\) \(\Delta BEC\) (cmt)

\(\frac{DC}{AC}=\frac{EC}{BC}\) hay DC . BC = AC . EC ( đpcm )

d, Ta có : EC = \(\frac{DC.BC}{.AC}\) hay EC = \(\frac{6.12}{10}\) = 7,2 cm

30 tháng 4 2019

xét tam giác EBC và tam giác DAC có : 

góc C chung

góc ADC = góc BEC = 90

=> tam giác EBC ~ tam giác DAC (g - g)

30 tháng 3 2018

a)   \(\Delta ABC\)có    \(AD\)  là phân giác   \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\) (tính chất đường phân giác trong tam giác)

hay  \(\frac{BD}{8}=\frac{DC}{10}=\frac{BD+DC}{8+10}=\frac{9}{18}=\frac{1}{2}\)

suy ra:    \(BD=\frac{8}{2}=4\)

              \(DC=\frac{10}{2}=5\)

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

17 tháng 4 2020

Mục tiêu -500 sp mong giúp đỡ

17 tháng 4 2020

k giải thì thôi ở đó phá

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE