Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.16\ge2^n>4\)
\(2.2^4\ge2^n>2^2\)
\(2^5\ge2^n>2^2\)
=> \(n\in\left\{3,4,5\right\}\)
Vậy: \(n\in\left\{3,4,5\right\}\)
\(\dfrac{1}{2}.2^{n+4}.2^n=2^5\\ =>2^{n+4+n}=2^5:\dfrac{1}{2}\\ =>2^{2n+4}=2^5.2\\ =>2^{2n+4}=2^6\\ =>2n+4=6\\ =>2n=2=>n=1\)
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{1}{2}\cdot2^{n+4}\cdot2^n=2^5\)
`\Rightarrow `\(\dfrac{1}{2}\cdot2^n\cdot2^4\cdot2^n=2^5\)
`\Rightarrow `\(2^{n\cdot2+4}=2^5\div\dfrac{1}{2}\)
`\Rightarrow `\(2^{n\cdot2+4}=2^6\)
`\Rightarrow `\(n\cdot2+4=6\)
`\Rightarrow `\(2n=2\)
`\Rightarrow n=1`
\(\left|x\right|+x=\dfrac{1}{3}\)
\(\Rightarrow\left|x\right|=\dfrac{1}{3}-x\)
\(\left|x\right|=\left\{{}\begin{matrix}xkhix\ge0\\-xkhix< 0\end{matrix}\right.\)
Với \(x\ge0\Rightarrow x=\dfrac{1}{3}-x\Rightarrow2x=\dfrac{1}{3}\Rightarrow x=\dfrac{1}{6}\left(tm\right)\)
Với \(x< 0\Rightarrow-x=\dfrac{1}{3}-x\Rightarrow-x+x=\dfrac{1}{3}\Rightarrow0=\dfrac{1}{3}\left(VL\right)\)
Vậy \(x=\dfrac{1}{6}\)
\(\left|x\right|+x=\dfrac{1}{3}\left(1\right)\)
TH1 : \(x\ge0\)
\(\left(1\right)=>x+x=\dfrac{1}{3}\\ =>2x=\dfrac{1}{3}\\ =>x=\dfrac{1}{3}:2=\dfrac{1}{6}\left(TMDK\right)\)
\(TH2:x< 0\)
\(\left(1\right)=>-x+x=\dfrac{1}{3}\\ =>0=\dfrac{1}{3}\)( Vô lí )
Vậy `x=1/6`
\(9.27\le3n\le243\\ =>9.27:3\le3n:3\le243:3\\=>81\le n\le81\\ =>n=81\)
\(9.27\le3^n\le243\)
\(3.3^3\le3^n\le3^5\)
\(3^4\le3^n\le3^5\)
\(n\in\left\{4,5\right\}\)
Vậy: \(n\in\left\{4,5\right\}\)
kẻ NI và IK
I thuộc MI
MI là phân giác của góc PMN (gt)
IH _|_ MN (gt)
IK _|_ MP (gt)
=> IH = IK (định lí) (1)
có I thuộc đường trung trực của NP (gt)
=> IN = IP (định lí)
xét tam giác IHN và tam giác IKP có : góc IHN = góc IKP = 90 và (1)
=> tam giác IHN = tam giác IKP (ch-cgv)
=> HN = KP (định nghĩa)
\(-\frac{2}{3}=\frac{10}{-15}=-\frac{10}{15}\)
\(\frac{4}{-5}=\frac{12}{-15}=-\frac{12}{15}\)
\(V\text{ì}-\frac{10}{15}>-\frac{12}{15}\)
Nên \(-\frac{2}{3}>-\frac{4}{5}\)
Ta có:
\(-\frac{2}{3}=\frac{4}{-6}\)
Vì \(\frac{4}{-6}>\frac{3}{-5}\Rightarrow\frac{-2}{3}>\frac{3}{-5}\)
Vậy \(\frac{-2}{3}>\frac{4}{-5}\)
Sửa đề : \(2^x+2^{x+3}=144\\ =>2^x.\left(1+2^3\right)=144\\ =>2^x=\dfrac{144}{9}=16=2^4\\ =>x=4\)
`@` `\text {Ans}`
\(2^x+2^{x+3}=144\)
`\Rightarrow 2^x + 2^x + 2^3 = 144`
`\Rightarrow 2^x (8+1)=144`
`\Rightarrow 2^x*9=144`
`\Rightarrow 2^x=144 \div 9`
`\Rightarrow 2^x = 16`
`\Rightarrow 2^x = 2^4`
`\Rightarrow x=4`