Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,2x+3x-4x=\left(-2\right)^3\)
<=>\(x=-8\)
\(2,x-2x=4^2+4^0\)
<=>\(-x=16+1\)
<=>\(-x=17\)
<=>\(x=-17\)
\(3,2^3x-3^2x=|12-21|\)
<=>\(-x=9\)
<=>\(x=-9\)
\(4,x-45=2x+54\)
<=>\(x-2x=54+45\)
<=>\(-x=99\)
<=>\(x=-99\)
\(5,5x-12+23=6^7:6^5\)
<=>\(5x+11=6^2\)
<=>\(5x+11=36\)
<=>\(5x=25\)
<=>\(x=5\)
b) \(3.2^{x+1}=12\)
\(2^{x+1}=12:3\)
\(2^{x+1}=4\)
\(2^{x+1}=2^2\)
\(x+1=2\)
\(x=2-1\)
\(x=1\)
Vậy \(x=1\)
c) \(2^{x-1}=2^3+2^4-2^3\)
\(2^{x-1}=8+16-8\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
Vậy \(x=5\)
d) \(x^{50}=x\)
\(x^{50}-x=0\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
\(b.3.2^{x+1}=12\\ \Rightarrow2^{x+1}=4\\ \Rightarrow2^{x+1}=2^2\\ \Rightarrow x=1\\ \)
c) \(2^{x-1}=2^3-2^3+2^4\\ \Rightarrow2^{x-1}=0+16\\ \Rightarrow2^{x-1}=16\\ \Rightarrow2^{x-1}=2^4\\ \Rightarrow x-1=4\\ \Rightarrow x=5\)
d) \(x^{50}=x\\ \Rightarrow x=0;1\)
e) \(2\left(2x-1\right)^4=32\\ \Rightarrow\left(2x-1\right)^4=16\\ \Rightarrow\left(2x-1\right)^4=2^4\\ \Rightarrow2x-1=2\\ \Rightarrow2x=3\\ \Rightarrow x=\frac{3}{2}\)
g) Bí
6x . 6 = 2016
6x = 2016 : 6
6x = 336
=> x \(\in\varnothing\)
42x+3 : 4 = 256
42x+3 = 256 x 4
42x+3 = 1024
42x+3 = 45
2x + 3 = 5
2x = 5 - 3
2x = 2
x = 2 : 2
x = 1
[ x - 2 ]2 = 16
[ x - 2 ]2 = 42
x - 2 = 4
x = 4 + 2
x = 6
[ 2x - 1 ]3 = 27
[ 2x - 1 ]3 = 33
2x - 1 = 3
2x = 3 + 1
2x = 4
x = 4 : 2
x = 2
[ 2x - 1 ]100 = [ 2x - 1 ]100
=> x \(\in N\)
1) 2x . 4 = 128
2x = 128 : 4
2x = 32
2x = 25
=> x = 5
2) (2x + 1)3 = 125
(2x + 1)3 = 53
=> 2x + 1 = 5
2x = 5 - 1
2x = 4
x = 2
các bài khác bạn tự làm nha
\(2\cdot2^{2x}+4^3\cdot2^{x-1}=520\)
\(2^1\cdot2^{2x}+\left(2^2\right)^3\cdot2^{x+1}=520\)
\(2^{2x+1}+2^{2x+1}\cdot2^6=520\)
\(2^{2x+1}\cdot\left(1+2^6\right)=520\)
\(2^{2x+1}\cdot65=520\)
\(2^{2x+1}=520:65\)
\(2^{2x+1}=8\)
\(2^{2x+1}=2^3\)
\(2x+1=3\)
\(2x=3-1\)
\(2x=2\)
\(x=2:2\)
\(x=1\)