Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(3^{-2}.3^4.3^x=3^7\)
\(\Rightarrow3^{-2+4+x}=3^7\)
\(\Rightarrow3^{2+x}=3^7\)
Vì \(3\ne\pm1;3\ne0\) nên \(2+x=7\Rightarrow x=5\)
b, \(2^{-1}.2^x+4.2^x=9.2^5\)
\(\Rightarrow2^x\left(2^{-1}+4\right)=288\)
\(\Rightarrow2^x.4,5=288\Rightarrow2^x=64=2^6\)
Vì \(2\ne\pm1;2\ne0\) nên \(x=6\)
Chúc bạn học tốt!!!
a) 2-1.2x + 4.2x = 9.25
=> 2x-1 + 4.2.2x-1 = 9.25
=> 2x-1 + 8.2x-1 = 9.25
=> 2x-1.(1 + 8) = 9.25
=> 2x-1.9 = 9.25
=> x - 1 = 5
=> x = 5 + 1 = 6
Vậy x = 6
b) (7x + 2)-1 = \(\frac{1}{9}\)
=> 7x + 2 = 9
=> 7x = 9 - 2
=> 7x = 7
=> x = 7 : 7 = 1
Vậy x = 1
a) 2^(-1) . 2^x + 4 . 2^x = 9 . 2^5
=> 1/2 . 2^x + 4 . 2^x = 9 . 32
=> 2^x . (1/2 + 4) = 288
=> 2^x . 9/2 = 288
=> 2^x = 288 : 9/2
=> 2^x = 64
2^x = 2^6
=> x = 6
b) (7x + 2)^(-1) = 1/9
=> 1 phần 7x + 2 = 1/9
=> 7x + 2 = 9
=> 7x = 9 - 2
=> 7x = 7
=> x = 7 : 7
=> x = 1
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
\(\frac{1}{2}.2^x+4.2^x=9.2^5\)
\(\Rightarrow\)2x(\(\frac{1}{2}+4\))=9.25
\(\Rightarrow\)\(\frac{9}{2}.2^x=9.2^5\)
\(\Rightarrow9.2^{x-1}=9.2^5\)
\(\Rightarrow2^{x-1}=2^5\)
\(\Rightarrow\)x-1=5
\(\Rightarrow\)x=6(tm)
Vậy x=6
1. \(2^x=4^{y-1}\Rightarrow2^x=\left(2^2\right)^{y-1}=2^{2y-2}\Rightarrow x=2y-2\)
\(27^y=3^{x+8}\Rightarrow\left(3^3\right)^y=3^{x+8}\Rightarrow3^{3y}=3^{x+8}\Rightarrow3y=x+8\)
ta có: x=2y-2
mà 3y=x+8
=> 3y=2y-2+8
=> 3y-2y+2-8=0
=> y-6=0
=> y=6
x=2y-2
=> x=2.6-2=12-2=10
Vậy x=10; y=6.
2.a.\(\left(-\frac{1}{3}\right)^{n-5}=\frac{1}{81}\)
\(\Rightarrow \left(-\frac{1}{3}\right)^{n-5}=\left(-\frac{1}{3}\right)^4\)
=> n-5=4
=> n=4+5
=> n=9
b.\(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\left(2^{-1}+4\right)=9.32\)
=> 2n.(2-1+4)=288
=> 2n.(1/2+4)=288
=> 2n.9/2=288
=> 2n=288:9/2
=> 2n=64
=> 2n=26
Vậy n=6.
\(2^{-1}.2^n+4.2^n=9.2^5\)
\(2^n.2=9.2^5\)
\(\Rightarrow2^n=9.2^4\)
Ko có n nhé bn
Mk làm lun, ko viết lại đề bài nữa nhé =))
a) \(\Leftrightarrow\)\(3^2.3^{n+1}=9^4\)
\(\Leftrightarrow3^{n+1}=9^4:3^2\)
\(\Leftrightarrow3^{n+1}=3^6\)
\(\Rightarrow n+1=6\)
\(\Leftrightarrow n=6-1\)
\(\Rightarrow n=5\)
b)\(\Leftrightarrow2^n.\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^n.\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=\left(9.2^5\right):\frac{9}{2}\)
\(\Rightarrow2^n=468:\frac{9}{2}\)
Tự tính nốt KQ giúp mk nha ♥
\(2^{-1}.2^x+4.2^x=9.2^5\)
\(\frac{1}{2}.2^x+4.2^x=9.2^5\)
\(2^x\left(\frac{1}{2}+4\right)=9.2^5\)
\(2^x.\frac{9}{2}=288\)
\(2^x=288:\frac{9}{2}\)
\(2^x=64\)
\(2^x=2^6\)
\(\Rightarrow x=6\)
1/2*2x+4*2x=9*25
(1/2+4)*2x=225
9/2*2x=225
2x=225:9/2
2x=50
=>x\(\in\phi\)