Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2018}-\frac{x+2}{2017}=\frac{x+3}{2016}+1\)
\(\Leftrightarrow\frac{x+1}{2018}+1-\left(\frac{x+2}{2017}+1\right)=\frac{x+3}{2016}+1\)
\(\Leftrightarrow\frac{x+2019}{2018}-\frac{x+2019}{2017}=\frac{x+2019}{2016}\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
Có: \(\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\ne0\)
\(\Leftrightarrow x+2019=0\Leftrightarrow x=-2019\)
Vậy...
\(\frac{x+1}{2018}+\frac{x+2}{2019}=\frac{x-2014}{3}+\frac{x-2013}{4}\)
\(\Leftrightarrow\frac{x+1}{2018}+\frac{x+2}{2019}-\frac{x-2014}{3}-\frac{x-2013}{4}=0\)
\(\Leftrightarrow\frac{x+1}{2018}-1+\frac{x+2}{2019}-1-\frac{x-2014}{3}+1-\frac{x-2013}{4}+1=0\)
\(\Leftrightarrow\frac{x-2017}{2018}+\frac{x-2017}{2019}-\frac{x-2017}{2013}-\frac{x-2017}{2014}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
có : \(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2014}-\frac{1}{2013}\ne0\)
\(\Leftrightarrow x-2017=0\)
=> x = 2017
\(\Leftrightarrow\frac{x-3}{2016}-1=\left(\frac{x-2}{2017}-1\right)+\left(\frac{x-1}{2018}-1\right)\)
\(\Leftrightarrow\frac{x-3-2016}{2016}=\frac{x-2-2017}{2017}+\frac{x-1-2018}{2018}\)
\(\Leftrightarrow\frac{x-2019}{2016}-\frac{x-2019}{2017}-\frac{x-2019}{2018}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\) ( không tin cứ bấm máy tính mà xem =)) )
\(\Rightarrow x-2019=0\Rightarrow x=2019\)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+2017\right)\left(x+2018\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{\left(x+1\right)}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+...+\dfrac{1}{x+2017}-\dfrac{1}{x+2018}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+2018}\)
\(=\dfrac{2018}{x\left(x+2018\right)}\)
Dạng này mình làm suốt rồi, bạn cứ yên tâm.
Tính tổng
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+2017)(x+2018)
Giải:\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+....+\frac{1}{\left(x+2017\right)\left(x+2018\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+..........+\frac{1}{x+2017}-\frac{1}{x+2018}\)
\(=\frac{1}{x}-\frac{1}{x+2018}\)
Vậy........................................