Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`h)x/2-1/x=1/12(x ne 0)`
`<=>6x^2-12=x`
`<=>6x^2-x-12=0`
`<=>6x^2-9x+8x-12=0`
`<=>3x(2x-3)+4(2x-3)=0`
`<=>(2x-3)(3x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac32\\x=-\dfrac43\end{array} \right.\)
`i)x^2-7/6x+1/3=0`
`<=>6x^2-7x+2=0`
`<=>6x^2-3x-4x+2=0`
`<=>3x(2x-1)-2(2x-1)=0`
`<=>(2x-1)(3x-2)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac12\\x=\dfrac23\end{array} \right.\)
Câu cuối không có dấu "=" nên không tìm được x :v
- Hai câu h, i bấm nốt đáp án để đẹp nha ;-; câu k thiếu đề :v
Bài 1:
a.
$|x+\frac{7}{4}|=\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} x+\frac{7}{4}=\frac{1}{2}\\ x+\frac{7}{4}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-5}{4}\\ x=\frac{-9}{4}\end{matrix}\right.\)
b. $|2x+1|-\frac{2}{5}=\frac{1}{3}$
$|2x+1|=\frac{1}{3}+\frac{2}{5}$
$|2x+1|=\frac{11}{15}$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=\frac{11}{15}\\ 2x+1=\frac{-11}{15}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-2}{15}\\ x=\frac{-13}{15}\end{matrix}\right.\)
c.
$3x(x+\frac{2}{3})=0$
\(\Leftrightarrow \left[\begin{matrix} 3x=0\\ x+\frac{2}{3}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3}{2}\end{matrix}\right.\)
d.
$x+\frac{1}{3}=\frac{2}{5}-(\frac{-1}{3})=\frac{2}{5}+\frac{1}{3}$
$\Leftrightarrow x=\frac{2}{5}$
Nguyễn Quý Trung:
\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)
Bạn bớt 2 vế đi 1/3 thì \(x=\dfrac{2}{5}\)
4 câu đầu hìn như sai đề :v
`m)(3/2-2/(-5)):x-1/2=3/2`
`<=>(3/2+2/5):x=3/2+1/2=2`
`<=>19/10:x=2`
`<=>x=19/10:2=19/20`
`n)(3/2-5/11-3/13)(2x-2)=(-3/4+5/22+3/26)`
`<=>(3/2-5/11-3/13)(2x-2)+3/4-5/22-3/26=0`
`<=>(3/2-5/11-3/13)(2x-2)+1/2(3/2-5/11-3/13)=0`
`<=>(3/2-5/11-3/13)(2x-2+1/2)=0`
Mà `3/2-5/11-3/13>0`
`<=>2x-2+1/2=0`
`<=>2x-3/2=0`
`<=>2x=3/2<=>x=3/4`
a, \(\dfrac{3}{4}+x=\dfrac{8}{13}\)
\(x=\dfrac{8}{13}-\dfrac{3}{4}\)
\(x=-\dfrac{7}{52}\)
b,\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=-\dfrac{3}{20}\)
c, \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(2x-\dfrac{1}{7}=0\)
\(x-\dfrac{1}{7}=0:2\)
\(x-\dfrac{1}{7}=0\)
\(x=0-\dfrac{1}{7}\)
\(x=\dfrac{1}{7}\)
d, \(\dfrac{3}{4}+\dfrac{1}{4}\div x=\dfrac{2}{5}\)
\(\left(\dfrac{3}{4}+\dfrac{1}{4}\right):x=\dfrac{2}{5}\)
\(1:x=\dfrac{2}{5}\)
\(x=1:\dfrac{2}{5}\)
\(x=\dfrac{5}{2}\)
a) \(\dfrac{3}{4}+x=\dfrac{8}{13}\)\(\Leftrightarrow\) \(x=\dfrac{8}{13}-\dfrac{3}{4}=\dfrac{-7}{52}\) vậy \(x=\dfrac{-7}{52}\)
b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\) \(\Leftrightarrow\) \(\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\) \(\Leftrightarrow\) \(x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=\dfrac{-3}{20}\) vậy \(x=\dfrac{-3}{20}\)
c) \(2x\left(x-\dfrac{1}{7}\right)=0\) \(\Leftrightarrow\) \(2x^2-\dfrac{2}{7}x=0\)
\(\Delta\) = \(\left(\dfrac{-2}{7}\right)^2-4.2.0=\dfrac{4}{49}>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{\dfrac{2}{7}+\sqrt{\dfrac{4}{49}}}{4}=\dfrac{1}{7}\)
\(x_2=\dfrac{\dfrac{2}{7}-\sqrt{\dfrac{4}{49}}}{4}=0\)
vậy \(x=0;x=\dfrac{1}{7}\)
2, \(\Rightarrow\left\{{}\begin{matrix}\\\dfrac{5}{4}x-\dfrac{7}{2}=0\\\dfrac{5}{8}x+\dfrac{3}{5}=0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{14}{5}\\\\x=\dfrac{-24}{25}\\\end{matrix}\right.\)
a) \(x-\dfrac{2}{3}=\dfrac{3}{8}\Rightarrow x=\dfrac{3}{8}+\dfrac{2}{3}=\dfrac{25}{24}\)
b) \(x-\dfrac{3}{4}=\dfrac{13}{10}:\dfrac{26}{5}\Rightarrow x-\dfrac{3}{4}=\dfrac{1}{4}\Rightarrow x=\dfrac{1}{4}+\dfrac{3}{4}=1\)
c) \(\dfrac{3}{2}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\Rightarrow x+\dfrac{1}{2}=\dfrac{3}{2}-\dfrac{4}{5}=\dfrac{7}{10}\)
\(\Rightarrow x=\dfrac{7}{10}-\dfrac{1}{2}=\dfrac{1}{5}\)
d) \(\left|x-2\right|-1=0\Rightarrow\left|x-2\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
a: Ta có: \(x-\dfrac{2}{3}=\dfrac{3}{8}\)
\(\Leftrightarrow x=\dfrac{3}{8}+\dfrac{2}{3}=\dfrac{9}{24}+\dfrac{16}{24}=\dfrac{25}{24}\)
b: Ta có: \(x-\dfrac{3}{4}=\dfrac{13}{10}:\dfrac{26}{5}\)
\(\Leftrightarrow x-\dfrac{3}{4}=\dfrac{13}{10}\cdot\dfrac{5}{26}=\dfrac{1}{4}\)
hay x=1
\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{10}\)
\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=2\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)
\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)
\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)
\(\Leftrightarrow x=-\dfrac{49}{8}\)
\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)
\(\Leftrightarrow x=\dfrac{413}{160}\)
1.
(x + 7)(x - 2) > 0
TH1: \(\left\{{}\begin{matrix}x+7>0\\x-2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>-7\\x>2\end{matrix}\right.\) \(\Rightarrow x>2\)
TH2: \(\left\{{}\begin{matrix}x+7< 0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -7\\x< 2\end{matrix}\right.\) \(\Rightarrow x< -7\)
2.
\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\) \(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Leftrightarrow259-7x=3x+39\)
\(\Leftrightarrow259-39=3x+7x\)
\(\Leftrightarrow220=10x\Rightarrow x=22\)
3.
\(\dfrac{x-3}{x+8}< 0\)
TH1: \(\left\{{}\begin{matrix}x-3< 0\\x+8>0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x< 3\\x>-8\end{matrix}\right.\) => -8 < x < 3
TH2: \(\left\{{}\begin{matrix}x-3>0\\x+8< 0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x>3\\x< -8\end{matrix}\right.\) (loại)
Vậy -8 < x < 3
1 x∈N