Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) \(pt<=>x^4+4x^3+6x^2+4x+1=2x^4+2\)
<=> \(x^4-4x^3-6x^2-4x+1=0\)
dễ thẫy x = 0 không là nghiệm chia cả hai vế cho x^2
\(pt<=>x^2-4x-6-\frac{4}{x}+\frac{1}{x^2}=0\)
<=> \(x^2+\frac{1}{x^2}-4\left(x+\frac{1}{x}\right)-6=0\)
Đặt x + 1/x = t pt <=> \(t^2-2-4t-6=0\)
Giải pt ẩn t sau đó tìm x
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
\(x+\frac{1}{x}\ge2\Leftrightarrow\frac{x^2+1}{x}\ge2\)
\(\Leftrightarrow x^2+1\ge2x\left(x\ge0\right)\)
\(\Leftrightarrow x^2-2x+1\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng}\right)\)
Vì BĐT cuối đúng nên BĐT đầu đúng (với x >= 0)
D) ĐK x>= 1
đặt \(\sqrt{x-1}=a;\sqrt{x^3+x^2+x+1}=b\)
pt <=> \(a+b=1+ab\Rightarrow a+b-1-ab=0\)
<=> \(\left(a-1\right)\left(1-b\right)=0\)