Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a) \(\frac{4}{x+5}=\frac{3}{2x-1}\)
=> 4(2x - 1) = 3(x + 5)
=> 8x - 4 = 3x + 15
=> 8x - 3x = 15 + 4
=> 5x = 19
=> x = 19/5
b) \(\frac{x+11}{19}+\frac{x+12}{20}+\frac{x+13}{21}=3\)
=> \(\left(\frac{x+11}{19}-1\right)+\left(\frac{x+12}{20}-1\right)+\left(\frac{x+13}{21}-1\right)=0\)
=> \(\frac{x-8}{19}+\frac{x-8}{20}+\frac{x-8}{21}=0\)
=> \(\left(x-8\right)\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}\right)=0\)
=> x - 8 = 0
=> x = 8
c) \(\left(2x-1\right)^2=\left(2x-1\right)^3\)
=> \(\left(2x-1\right)^2-\left(2x-1\right)^3=0\)
=> \(\left(2x-1\right)^2.\left[1-\left(2x-1\right)\right]=0\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\1-2x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=1\\2-2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
a) 4/x + 3 = 3/2x - 1
<=> 4.(2x - 1) = (x + 3).3
<=> 8x - 4 = 3x + 9
<=> 8x = 3x + 9 + 4
<=> 8x = 3x + 13
<=> 8x - 3x = 13
<=> 5x = 13
<=> x = 13/5
=> x = 13/5
c) (2x - 1)2 = (2x - 1)3
<=> 4x2 - 4x + 1 = 8x3 - 12x2 + 6x - 1
<=> 8x3 - 12x2 + 6x - 1 = 4x2 - 4x + 1
<=> 8x3 - 12x2 + 6x - 1 - 1 = 4x2 - 4x
<=> 8x3 - 12x2 + 6x - 2x = 4x2 - 4x
<=> 8x3 - 12x2 + 6x - 2x - 4x = 4x2
<=> 8x3 - 12x2 + 10x - 2 = 4x2
<=> 8x3 - 12x2 + 10x - 2 - 4x2 = 0
<=> 8x2 - 16x2 + 10x - 2 = 0
<=> 2(x - 1)(2x - 1)2 = 0
<=> x - 1 = 0 hoặc 2x - 1 = 0
x = 0 + 1 2x = 0 + 1
x = 1 2x = 1
x = 1/2
=> x = 1 hoặc x = 1/2
a, \(\dfrac{x}{2}+\dfrac{3x}{5}=-\dfrac{3}{2}\Rightarrow5x+6x=-15\Leftrightarrow x=-\dfrac{15}{11}\)
b, TH1 : \(\dfrac{2}{3}x-\dfrac{4}{7}=0\Leftrightarrow x=\dfrac{6}{7}\);TH2 : \(\dfrac{1}{2}-\dfrac{3}{7x}=0\Rightarrow7x-6=0\Leftrightarrow x=\dfrac{6}{7}\)
c, TH1 : \(\dfrac{4}{5}-2x=0\Leftrightarrow x=\dfrac{4}{5}:2=\dfrac{2}{5}\)
TH2 : \(\dfrac{1}{3}+\dfrac{3}{5x}=0\Rightarrow5x+9=0\Leftrightarrow x=-\dfrac{9}{5}\)
1) |2x-1|=-19-x<=> \(\left[\begin{array}{nghiempt}2x-1=-19-x\\2x-1=19+x\end{array}\right.\)=> x=-6 hoặc x=20
2) |4-3x|=2x-10<=>\(\left[\begin{array}{nghiempt}4-3x=2x-10\\4-3x=10-2x\end{array}\right.\)=> x= 14/6 hoặc x=-6
3) |x|=3+2x<=> \(\left[\begin{array}{nghiempt}x=-3-2x\\x=3+2x\end{array}\right.\)=> x=-1 hoặc x=-3
1) - Nếu 2x - 1 < 0 thì -2x + 1 = -19 - x => -x = -20 => x = 20
- Nếu 2x - 1 > 0 thì 2x - 1 = -19 - x => 3x = -18 => x = -6
2) - Nếu 4 - 3x < 0 thì -4 + 3x = 2x - 10 => 6 = -x => x = -6
- Nếu 4 - 3x > 0 thì 4 - 3x = 2x - 10 => 14 = 5x => x = \(\frac{14}{5}\)
3) - Nếu x < 0 thì -x = 3 + 2x => -3x = 3 => x = -1
- Nếu x > 0 thì x = 3 + 2x => -x = 3 => x = -3
1.
\(\left|2x-1\right|=-19-x\)
\(2x-1=\pm\left(-19-x\right)\)
TH1:
\(2x-1=-19-x\)
\(2x+x=-19-1\)
\(3x=-20\)
\(x=-\frac{20}{3}\)
TH2:
\(2x-1=19+x\)
\(2x-x=19-1\)
\(x=18\)
Vậy x = -20/3 hoặc x = 18
2.
\(\left|4-3x\right|=2x-10\)
\(4-3x=\pm\left(2x-10\right)\)
TH1:
\(4-3x=2x-10\)
\(-3x-2x=-10-4\)
\(-5x=-14\)
\(x=\frac{14}{5}\)
TH2:
\(4-3x=-2x+10\)
\(-3x+2x=10-4\)
\(x=-6\)
Vậy x = 14/5 hoặc x = -6
3.
\(\left|x\right|=3+2x\)
\(x=\pm\left(3+2x\right)\)
TH1:
\(x=3+2x\)
\(x-2x=3\)
\(x=-3\)
TH2:
\(x=-3-2x\)
\(x+2x=-3\)
\(3x=-3\)
\(x=-1\)
1)
x^3 -16x=0`
`<=>x(x^2 -16)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b)
`x^4 -2x^3=0`
`<=>x^3 (x-2)=0`
\(< =>\left[{}\begin{matrix}x^3=0\\x-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
3)
`(2x-11)(x^2 -1)=0`
\(< =>\left[{}\begin{matrix}2x-11=0\\x^2-1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}2x=11\\x^2=1\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=1\\x=-1\end{matrix}\right.\)
4)
`x^3 -36x=0`
`<=>x(x^2 -36)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
5)
`2x+19=0`
`<=>2x=-19`
`<=>x=-19/2`
bài về nghiệm của đa thức