K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

\(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)

\(\frac{8\left(x+2007\right)}{8\left(x+2000\right)\left(x+2007\right)}-\frac{8\left(x+2000\right)}{8\left(x+2000\right)\left(x+2007\right)}=\frac{7\left(x+2000\right)\left(x+2007\right)}{8\left(x+2000\right)\left(x+2007\right)}\)

\(8x+8.2007-8x+8.2000=7\left(x^2+4007x+2000.2007\right)\)

\(8.7-7\left(x^2+4007x+2000.2007\right)=0\)

\(7\left(8-x^2-4007x-2000.2007\right)=0\)

\(8-x^2-4007x-2000.2007=0\)

\(x^2+4007x+4013992=0\)

\(\left(x^2+2008x\right)+\left(1999x+4013992\right)=0\)

\(\left(x+2008\right)\left(x+1999\right)=0\)

\(\hept{\begin{cases}x=-2008\\x=-1999\end{cases}}\)

13 tháng 7 2018

\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)

\(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+...+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)

\(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)

19 tháng 2 2021

\(\dfrac{x-2}{2001}+\dfrac{x}{2003}=1+\dfrac{1-x}{2002}\Leftrightarrow\dfrac{x-2}{2001}+\dfrac{x}{2003}-\dfrac{x-1}{2002}-1=0\)  

\(\Leftrightarrow\dfrac{x-2}{2001}-1+\dfrac{x}{2003}-1-\dfrac{x-1}{2002}+1=0\) 

\(\Leftrightarrow\dfrac{x-2003}{2001}+\dfrac{x-2003}{2003}-\left(\dfrac{x-2003}{2002}\right)=0\)

\(\Leftrightarrow\left(x-2003\right)\left(\dfrac{1}{2001}+\dfrac{1}{2003}-\dfrac{1}{2002}\right)=0\) \(\Leftrightarrow x=2003\) vì  \(\dfrac{1}{2001}+\dfrac{1}{2003}-\dfrac{1}{2002}>0\)Vậy...

Ta có: \(\dfrac{x-2}{2001}+\dfrac{x}{2003}=1+\dfrac{1-x}{2002}\)

\(\Leftrightarrow\dfrac{x-2}{2001}+\dfrac{x}{2003}-1+\dfrac{1-x}{2002}=0\)

\(\Leftrightarrow\dfrac{x-2}{2001}-1+\dfrac{x}{2003}-1+\dfrac{1-x}{2002}+1=0\)

\(\Leftrightarrow\dfrac{x-2003}{2001}+\dfrac{x-2003}{2003}-\dfrac{x-2003}{2002}=0\)

\(\Leftrightarrow\left(x-2003\right)\left(\dfrac{1}{2001}+\dfrac{1}{2003}-\dfrac{1}{2002}\right)=0\)

mà \(\dfrac{1}{2001}+\dfrac{1}{2003}-\dfrac{1}{2002}\ne0\)

nên x-2003=0

hay x=2003

Vậy: S={2003}

17 tháng 2 2020

\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}=4\)

\(\Leftrightarrow\left(\frac{x}{2000}-1\right)+\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)+\left(\frac{x+3}{2003}-1\right)=4-4=0\)

\(\Leftrightarrow\frac{x-2000}{2000}+\frac{x-2000}{2001}+\frac{x-2000}{2002}+\frac{x-2000}{2003}=0\)

\(\Leftrightarrow\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x-2000=0\)  ( do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\ne0\) )

\(\Leftrightarrow x=2000\)

Vậy x = 2000

Đây là cách của lớp 7 nha

@@ Học tốt

17 tháng 2 2020

\(\frac{x}{2000}\)- 1+\(\frac{x+1}{2001}\)-1+\(\frac{x+2}{2002}\)-1+\(\frac{x+3}{2003}\)-1=0

<=>\(\frac{x-2000}{2000}\)\(\frac{x-2000}{2001}\)\(\frac{x-2000}{2002}\)\(\frac{x-2000}{2003}\)=0

<=>\(\left(x-2000\right)\)\(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)=0

Do \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)khác 0

=> \(x-2000=0\)<=> \(x=2000\)

26 tháng 2 2022

\(\dfrac{1}{\left(x+2000\right)\left(x+2001\right)}+\dfrac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\dfrac{1}{\left(x+2009\right)\left(x+2010\right)}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2001}+\dfrac{1}{x+2001}-\dfrac{1}{x+2002}+...+\dfrac{1}{x+2009}-\dfrac{1}{x+2010}=\dfrac{10}{11}\)

\(\Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2010}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{x+2010-x-2000}{\left(x+2000\right)\left(x+2010\right)}=\dfrac{10}{11}\)

\(\Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2010}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{10}{\left(x+2000\right)\left(x+2010\right)}=\dfrac{10}{11}\\ \Leftrightarrow\left(x+2000\right)\left(x+2010\right)=11\\ \Leftrightarrow...\)

28 tháng 8 2016

Ta có :

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

\(\Rightarrow x+2004=0\)

\(\Rightarrow x=-2004\)

Vậy ...

30 tháng 8 2016

Ta có: \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)


\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

25 tháng 5 2021

\(\Leftrightarrow\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)

\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)=0\)

\(\Leftrightarrow x=-2005\)