Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1:
câu a,f áp dụng a2-b2=(a-b)(a+b)
câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)
câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)
câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)
câu g xem lại đề
1: \(\Leftrightarrow-4x^2+3x-4x^2+8x=10\)
=>-8x^2+11x-10=0
=>\(x\in\varnothing\)
2: \(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)
=>-14x+5=x-2
=>-15x=-7
=>x=7/15
3: \(\Leftrightarrow12x^2-12x^2+20x=10x-17\)
=>10x=-17
=>x=-17/10
4: \(\Leftrightarrow4x^2-2x+3-4x^2+20x=7x-3\)
=>18x+3=7x-3
=>11x=-6
=>x=-6/11
5: \(\Leftrightarrow-3x+15+5x-5+3x^2=4-x\)
\(\Leftrightarrow3x^2+2x+10-4+x=0\)
=>3x^2+3x+6=0
hay \(x\in\varnothing\)
1) \(-4x^5\left(x^3-4x^2+7x-3\right)\)
\(=-4x^8+16x^7-28x^6+12x^5\)
2) \(3x^4\left(-2x^3+5x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)
\(=-6x^7+15x^6-2x^5+x^4\)
3) \(-5x^2y^4\left(3x^2y^3-2x^3y^2-xy\right)\)
\(=-15x^4y^7+10x^5y^6+5x^3y^5\)
4) \(4x^3y^2\left(-2x^2y+4x^4-3y^2\right)\)
\(=-8x^5y^3+16x^7y^2-12x^3y^4\)
x2 - 6x + 9
= (x -3)2 (hàng đẳng thức đáng nhớ số 2)
x2 + x + 1/4
= x2 + 2.x.1/2 + 1/4
= (x +1/2)2 (hàng đẳng thức 1)
x2-6x+9=(x+3)2
x2+x+\(\frac{1}{4}\)=\(\left(x+\frac{1}{2}\right)^2\)
Học tốt!
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
\(a\)) \(-2,5ab\left(-2a^2+3b^2\right)=5a^3b-7,5ab^3\)
b) \(-2x^3\left(3x+0,5x^2-7x^3-2\right)\)
\(=-6x^4-1x^5+14x^6+4x^3\)
c/ \(\left(x^3-2x^2+3x-5\right)\left(-xy\right)\)
\(=-x^4y+2x^3y-3x^2y+5xy\)
d/ \(\left(-\dfrac{1}{2}x^2y\right)\left(3x^3-\dfrac{2}{7}x^2-\dfrac{4}{5}x+8\right)\)
\(=-\dfrac{3}{2}x^5y+\dfrac{1}{7}x^4y+\dfrac{2}{5}x^3y-4x^2y\)
\(-2,5ab\left(-2a^2+3b^2\right)=5a^3b-7,5ab^3\)
\(-2x^3\left(3x+0,5x^2-7x^3-2\right)=-6x^4-x^5+14x^6+4x^3\)
\(\left(x^3-2x^2+3x-5\right)\left(-xy\right)=-x^4y+2x^3y-3x^2y+5xy\)
\(\left(\dfrac{1}{2}x^2y\right)\left(3x^3-\dfrac{2}{7}x^2-\dfrac{4}{5}x+8\right)\)
\(=\dfrac{-3}{2}x^5y+\dfrac{1}{7}x^4y+\dfrac{2}{5}x^3y-4x^2y\)
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
1) \(x^2-y^2-5x+5y\)
=\(\left(x+y\right)\left(x-y\right)-5\left(x+y\right)\)
=\(\left(x+y\right)\left(x-y-5\right)\)
2) \(x^3-3x^2-3x+1\)
=\(x^3+x^2-4x^2-4x+x+1\)
=\(x^2\left(x+1\right)-4x\left(x+1\right)+\left(x+1\right)\)
=\(\left(x^2-4x+1\right)\left(x+1\right)\)
=\(\left(x-\left(2+\sqrt{3}\right)\right).\left(x-\left(2-\sqrt{3}\right)\right).\left(x+1\right)\)
3) \(3x^2-7x-10\)
=\(3x^2+3x-10x-10\)
=\(3x\left(x+1\right)-10\left(x+1\right)\)
=\(\left(3x-10\right)\left(x+1\right)\)
4) \(x^2-3x+2\)
=\(x^2-2x-x+2\)
=\(x\left(x-2\right)-\left(x-2\right)\)
=\(\left(x-1\right)\left(x-2\right)\)