Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x\left(-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}
\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)
\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)
\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)
Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian
Nhiều vậy ai làm hết được :P
1) \(\frac{3x-2}{3}-2=\frac{4x+1}{4}\)
\(\Leftrightarrow\frac{3x-8}{3}=\frac{4x-1}{4}\)
\(\Leftrightarrow4\left(3x-8\right)=3\left(4x-1\right)\)
\(\Leftrightarrow12x-32=12x-3\)(vô lí)
Vậy pt vô nghiệm
P/s: mấy câu sau tương tự thôi mà :)))
nhăm nhe 1 câu thôi
\(10,\frac{3+5x}{5}-3=\frac{9x-3}{4}\)
\(\Leftrightarrow\frac{3+5x-15}{5}=\frac{9x-3}{4}\)
\(\Leftrightarrow\frac{-12+5x}{5}=\frac{9x-3}{4}\)
\(\Leftrightarrow\left(-12+5x\right)5=\left(9x-3\right)4\)
\(\Leftrightarrow-60+25x=36x-12\)
\(\Leftrightarrow26x-36x=-12+60\)
\(\Leftrightarrow-10x=48\)
\(\Leftrightarrow x=-4,8\)
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)
\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)
\(\Leftrightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow2x+4=2x+3\)
\(\Leftrightarrow0x=-1\)(vô nghiệm)
Vậy phương trình vô nghiệm.
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)
\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)
\(\Leftrightarrow2x+7=-10\)
\(\Leftrightarrow2x=-17\)
\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)
Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)
a) ( x + 2 )( x + 3 ) - ( x - 2 )( x + 5 )
= x2 + 5x + 6 - ( x2 + 3x - 10 )
= x2 + 5x + 6 - x2 - 3x + 10
= 2x + 16
b) ( 8 - 5x )( x + 2 ) + 4( x - 2 )( x + 1 ) + 2( x - 2 )( x + 2 ) + 10
= -5x2 - 2x + 16 + 4( x2 - x - 2 ) + 2( x2 - 4 ) + 10
= -5x2 - 2x + 16 + 4x2 - 4x - 8 + 2x2 - 8 + 10
= x2 - 6x + 10
c) 4( x - 1 )( x + 5 ) - ( x + 2 )( x + 5 ) - 3( x - 1 )( x + 2 )
= 4( x2 + 4x - 5 ) - ( x2 + 7x + 10 ) - 3( x2 + x - 2 )
= 4x2 + 16x - 20 - x2 - 7x - 10 - 3x2 - 3x + 6
= 6x - 24
d) ( x - 1 )( x5 + x4 + x3 + x2 + x + 1 )
= x6 + x5 + x4 + x3 + x2 + x - x5 - x4 - x3 - x2 - x - 1
= x6 - 1
\(\frac{1}{x-1}+\frac{2^2-5}{x^3-1}=\frac{4}{x^2+x+1}ĐK:x\ne1\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{-1}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
Khử mẫu : \(\Rightarrow x^2+x+1-1=4x-4\)
\(\Leftrightarrow x^2+x-4x+4=0\Leftrightarrow x^2-3x+4=0\)
\(\frac{1}{X-1}+\frac{X^2-5}{X^3-1}=\frac{4}{X^2+X+1}\)( CHẮC ĐỀ NHƯ NÀY )
ĐKXĐ : X ≠ 1
<=> \(\frac{X^2+X+1}{\left(X-1\right)\left(X^2+X+1\right)}+\frac{X^2-5}{\left(X-1\right)\left(X^2+X+1\right)}-\frac{4\left(X-1\right)}{\left(X-1\right)\left(X^2+X+1\right)}=0\)
<=> \(\frac{X^2+X+1+X^2-5-4X+4}{\left(X-1\right)\left(X^2+X+1\right)}=0\)
<=> \(\frac{2X^2-3X}{\left(X-1\right)\left(X^2+X+1\right)}=0\)
=> 2X2 - 3X = 0
<=> X( 2X - 3 ) = 0
<=> X = 0 HOẶC X = 3/2 ( TM )
VẬY TẬP NGHIỆM CỦA PHƯƠNG TRÌNH LÀ S = { 0 ; 3/2 }