K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

21 tháng 11 2018

\(\Leftrightarrow\frac{x^{2014}}{a^2+b^2+c^2+d^2}+\frac{y^{2014}}{a^2+b^2+c^2+d^2}+\frac{z^{2014}}{a^2+b^2+c^2+d^2}+\frac{t^{2014}}{a^2+b^2+c^2+d^2}\)

\(-\frac{x^{2014}}{a^2}-\frac{y^{2014}}{b^2}-\frac{z^{2014}}{c^2}-\frac{t^{2014}}{d^2}=0\)

\(\Leftrightarrow\left(\frac{x^{2014}}{a^2+b^2+c^2+d^2}-\frac{x^{2014}}{a^2}\right)+\left(\frac{y^{2014}}{a^2+b^2+c^2+d^2}-\frac{y^{2014}}{b^2}\right)+\left(\frac{z^{2014}}{a^2+b^2+c^2+d^2}-\frac{z^{2014}}{c^2}\right)\)

\(+\left(\frac{t^{2014}}{a^2+b^2+c^2+d^2}-\frac{t^{2014}}{d^2}\right)=0\)

\(\Leftrightarrow x^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+\)

\(z^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)

vì a2,b2,c2,d2 lớn hơn hoặc bằng 0

=>  \(\hept{\begin{cases}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\end{cases}}và....\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\)

\(\Rightarrow\hept{\begin{cases}x^{2014}=0\\y^{2014}=0\\z^{2014}=0\end{cases}}và..t^{2014}=0\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}và...t=0\)

=> \(\hept{\begin{cases}x^{2015}=0\\y^{2015}=0\\z^{2015}=0\end{cases}}và..t^{2015}=0\Rightarrow x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)

vậy \(x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)

24 tháng 3 2019

Ta có :

A=|x-2013|+|x-2014|+|x-2015|

<=> A=|2013-x|+|x-2014|+|x-2015|

>hoặc =|2013-x+x+2015|+|x-2014

=|2|+|x-2015|=2+|x-2015|

=>GTNN của A =2 khi :

|x-2015|=0=>x-2015=0=>x=2015

Vậy GTNN của A=2 khi x=2015

24 tháng 3 2019

A = |x - 3013| + |2014 - x| + |x - 2015| 

có : |x - 2013| > x - 2013

       |2014 - x| > 2014 - x

       |x - 2015| >

=> A > x - 2013 + 2014 - x

=> A > 1

=> Min A = 1

dấu = xảy ra khi 

...

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban