Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ giao điểm \(d_1;d_2\)là nghiệm của phương trình \(2x-3=x-2\Rightarrow x=1\Rightarrow y=-1\Rightarrow A\left(1;-1\right)\)
Hoành độ giao điểm \(d_2;d_3\)là nghiệm của phương trình \(x-2=4x-2\Rightarrow x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\)
Hoành độ giao điểm \(d_1;d_3\)là nghiệm của phương trình \(2x-3=4x-2\Rightarrow x=-\frac{1}{2}\Rightarrow y=-4\Rightarrow C\left(-\frac{1}{2};-4\right)\)
Gọi \(G\left(\frac{x_A+x_B+x_C}{3};\frac{y_A+y_B+y_C}{3}\right)\)là trọng tâm tam giác ABC
Khi đó \(\frac{x_A+x_B+x_C}{3}=\frac{1+0-\frac{1}{2}}{3}=\frac{1}{6}\)
\(\frac{y_A+y_B+y_C}{3}=\frac{-1-2-4}{3}=-\frac{7}{3}\)
Vậy \(G\left(\frac{1}{6};-\frac{7}{3}\right)\)
a. \(\left(d_2\right):4x+5y-11=0\Leftrightarrow y=\frac{11-4x}{5}=\frac{-4}{5}x+\frac{11}{5}\)
Vì (d1), (d2) đồng quy nên ta có PTHĐGĐ:
\(\frac{4}{3}x-1=\frac{-4}{5}x+\frac{11}{5}\)
\(\Leftrightarrow x=1,5\Rightarrow y=1\)
Vì (P), (d1), (d2) đồng quy nên ta thay x=1,5; y=1 vào (P):
\(1=a.\left(1,5\right)^2\)
\(\Leftrightarrow a=\frac{1}{2,25}=\frac{4}{9}\left(TM\right)\)
b. Tự vẽ.
c. Vì (P), (d2) đồng quy nên ta có PTHĐGĐ:
\(\frac{4}{9}x^2=\frac{-4}{5}x+\frac{11}{5}\)
\(\Leftrightarrow\frac{4}{9}x^2+\frac{4}{5}x-\frac{11}{5}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\frac{3}{2}\\x_2=\frac{-33}{10}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y_1=1\\y_2=\frac{121}{25}\end{matrix}\right.\)
Vậy g\(d_3\perp d_1\Rightarrow a'.\frac{4}{3}=-1\Leftrightarrow a'=\frac{-3}{4}\)iao điểm còn lại là của (P) và (d2) là \(\left(\frac{-33}{10};\frac{121}{25}\right)\)
d. Gọi \(d_3:y=a'x+b'\left(a'\ne0\right)\)là pt đt cần tìm.
Vì \(d_3\perp d_1\Rightarrow a'.\frac{4}{3}=-1\Leftrightarrow a'=\frac{-3}{4}\)
Vì (P) tx d3 nên ta có PTHĐGĐ:
\(\frac{4}{9}x^2-a'x-b'=0\)có Δ=0
\(\Rightarrow a'^2-\frac{16}{9}b'=0\)
\(\Rightarrow\frac{9}{16}-\frac{16}{9}b'=0\)
\(\Leftrightarrow b'=\frac{81}{256}\)
Vậy \(d_3:y=\frac{-3}{4}x+\frac{81}{256}\)
a)( x= 0 ; y = 1); (y=0; x= 1/2) đt1
(x=0;y = -1) ; (y=0;x= 1) đt2
b) giao điểm tức là cùng nghiệm
-2x+1 = x- 1 => x = 2/3 ; y = -1/3
A(2/3; -1/3)
c) anh xem đk // là làm dc, em mệt r
Câu 1:
Câu 2:
Do d cắt \(Ox\) tại \(A\Rightarrow A\left(2;0\right)\)
Do d cắt \(Oy\) tại \(B\Rightarrow B\left(0;2\right)\)
\(\Rightarrow OA=\sqrt{\left(0-2\right)^2+\left(0-0\right)^2}=2\\ OB=\sqrt{\left(0-0\right)^2+\left(0-2\right)^2}=2\\ \Rightarrow S_{AOB}=\dfrac{OA\cdot OB}{2}=\dfrac{2\cdot2}{2}=2\)
a) Giao điểm \(d_1;d_2\) có tọa độ \(x_o;y_0\)
\(Ta\text{ }có:2x_0+4=-2x_0+4\\ \Leftrightarrow4x_0=0\\ \Leftrightarrow x_0=0\\ \Leftrightarrow y_0=2\cdot0+4=4\)
Tọa độ của giao điểm \(d_1;d_2\) là \(0;4\)
b)