Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Hoành độ giao điểm của parabol (P) và đường thẳng d là nghiệm của phương trình:
\(x^2=2\left(m+3\right)x-2m-5\Leftrightarrow x^2-2\left(m+3\right)x+2m+5=0\) (1)
\(\Delta'=\left(m+3\right)^2-\left(2m+5\right)=m^2+6m+9-2m-5=m^2+4m+4=\left(m+2\right)^2\)
Phương trình (1) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'>0\)
mà \(\Delta'=\left(m+2\right)^2\ge0,\forall m\)
\(\Leftrightarrow\) \(\left(m+2\right)^2\ne0\Leftrightarrow m\ne-2\)
=> (P) cắt (d) tại 2 điểm phân biệt khi \(m\ne-2\)
Theo định lí Vi-ét: \(\left\{{}\begin{matrix}S=x_1+x_2=2\left(m+3\right)=2m+6\\P=x_1x_2=2m+5\end{matrix}\right.\)
\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\)
\(\Leftrightarrow\frac{\sqrt{x_2}+\sqrt{x_1}}{\sqrt{x_1x_2}}=\frac{4}{3}\)
\(\Rightarrow\left(\frac{\sqrt{x_2}+\sqrt{x_1}}{\sqrt{x_1x_2}}\right)^2=\frac{16}{9}\)
\(\Leftrightarrow\frac{x_2+2\sqrt{x_1x_2}+x_1}{x_1x_2}=\frac{16}{9}\)
\(\Leftrightarrow\frac{2m+6+2\sqrt{2m+5}}{2m+5}=\frac{16}{9}\)
\(\Leftrightarrow32m+80=18m+54+18\sqrt{2m+5}\)
\(\Leftrightarrow18\sqrt{2m+5}=14m+26\)
\(\Leftrightarrow\sqrt{2m+5}=\frac{7}{9}m+\frac{13}{9}\) (2)
ĐK: \(\left\{{}\begin{matrix}\frac{7}{9}m+\frac{13}{9}\ge0\\m\ne-2\end{matrix}\right.\Leftrightarrow m\ge-\frac{13}{7}\)
Bình phương 2 vế của phương trình (2):
\(2m+5=\frac{49}{81}m^2+\frac{182}{81}m+\frac{169}{81}\)
\(\Leftrightarrow\frac{49}{81}m^2+\frac{20}{81}m-\frac{236}{81}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(TM\right)\\m=-\frac{118}{49}\left(l\right)\end{matrix}\right.\)
Vậy m = 2 thỏa mãn đề bài
May mà nghiệm đẹp, phương trình xấu quá nên còn tưởng làm sai ;w;
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
để (d) song song zới đường thẳng (d')
=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)
b)phương trình hoành độ giao điểm của (d) zà (P)
\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)
ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)
để d cắt P tại hai điểm phân biệt
=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)
lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)
để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)
từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
Hoành độ giao điểm của (d) và (P) là nghiệm của pt
\(kx+\frac{1}{2}=\frac{1}{2}x^2\)
\(\Leftrightarrow x^2-2kx-1=0\left(1\right)\)
Để (d) cắt (P) tại 2 điểm phân biệt thì pt (1) phải có 2 nghiệm phân biệt
Khi đó: \(\Delta'>0\)
\(\Leftrightarrow k^2+1>0\)(Luôn đúng)
Theo Vi-ét ta có: xA + xB = 2k
xA . xB = -1
Vì \(A;B\in\left(P\right)\)
\(\Rightarrow\hept{\begin{cases}y_A=\frac{1}{2}x_A^2\\y_B=\frac{1}{2}x_B^2\end{cases}}\)
Gọi I(xI ; yI) là trung điểm AB
Khi đó: \(x_I=\frac{x_A+x_B}{2}=\frac{2k}{2}=k\)
\(y_I=\frac{y_A+y_B}{2}=\frac{x^2_A+x_B^2}{4}=\frac{\left(x_A+x_B\right)^2-2x_Ax_B}{4}=\frac{4k^2+2}{4}=k^2+\frac{1}{2}\)
Do đó: \(y_I=x_I^2+\frac{1}{2}\)
Nên I thuộc \(\left(P\right)y=x^2+\frac{1}{2}\)
Vậy ...............
P/S: nếu bạn thắc mắc về \(\left(P\right)=x^2+\frac{1}{2}\)thì mình sẽ giải thích
Ở cấp 2 thì ta chỉ được gặp dạng (P) y = ax2 có đỉnh trùng với gốc tọa độ
Nhưng đây chỉ là dạng đặc biệt của nó thôi . Còn dạng chuẩn là (P) y = ax2 + bx + c . (P) này có đỉnh không trùng với gốc tọa độ
- a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6 <=>-m-2-m+6=3 <=>-2m=-1 <=>m=1/2.
Phương trình hoành độ giao điểm:
\(x^2=ax+b\Leftrightarrow x^2-ax-b=0\) (1)
Để (d) tiếp xúc (P) tại \(A\left(-1;1\right)\) thì \(\left\{{}\begin{matrix}\Delta=a^2+4b=0\\-\frac{\left(-a\right)}{2}=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\)
2/ ĐKXĐ: \(-2\le x\le3\)
Áp dụng BĐT Bunhicopxki cho vế trái:
\(2\sqrt{2+x}+1.\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(2+x+3-x\right)}=5\)
Dấu "=" xảy ra khi và chỉ khi \(\frac{\sqrt{2+x}}{2}=\sqrt{3-x}\)
\(\Rightarrow2+x=4\left(3-x\right)\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất x=2