Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
B = \(\frac{2}{10.18}+\frac{2}{18.26}+\frac{2}{26.34}+...+\frac{2}{802.810}\)
B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\right)\)
B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}.\frac{8}{81}\)
B = \(\frac{2}{81}\)
4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)
Ta thấy:
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
…………
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12
a: \(=\dfrac{5}{7}\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)=\dfrac{5}{7}\cdot\dfrac{-7}{11}=-\dfrac{5}{11}\)
b: \(=\dfrac{12}{7}\left(19+\dfrac{5}{8}-15-\dfrac{1}{4}\right)=\dfrac{12}{7}\cdot\left(4+\dfrac{3}{8}\right)\)
\(=\dfrac{12}{7}\cdot\dfrac{35}{8}=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\)
c: \(=\dfrac{2}{15}-\dfrac{2}{15}\cdot5+\dfrac{3}{15}=\dfrac{2}{15}\cdot\left(-4\right)+\dfrac{3}{15}=\dfrac{-8+3}{15}=\dfrac{-5}{15}=-\dfrac{1}{3}\)
d: \(=\dfrac{4}{9}\left(19+\dfrac{1}{3}-39-\dfrac{1}{3}\right)=\dfrac{4}{9}\cdot\left(-20\right)=-\dfrac{80}{9}\)
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
\(\dfrac{1}{2\cdot5}+\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot7}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{9\cdot19}+\dfrac{1}{10\cdot19}=\dfrac{3+2}{2.3.5}+\dfrac{4+3}{3\cdot4\cdot7}+...+\dfrac{10+9}{9\cdot10\cdot19}=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)
Ta có: A = \(\frac{-2}{11}+\frac{6}{7}+\frac{1}{2}+\frac{-9}{11}+\frac{1}{7}\)
A = \(\left(\frac{-2}{11}+\frac{-9}{11}\right)+\left(\frac{6}{7}+\frac{1}{7}\right)+\frac{1}{2}\)
A = \(-1+1+\frac{1}{2}\)
A = \(\frac{1}{2}\)
B = \(\left(\frac{9}{16}+\frac{8}{27}\right)+\left(1+\frac{7}{16}+\frac{-19}{27}\right)\)
B = \(\frac{9}{16}+\frac{8}{27}+1+\frac{7}{16}-\frac{19}{27}\)
B = \(\left(\frac{9}{16}+\frac{7}{16}\right)+1+\left(\frac{8}{27}-\frac{19}{27}\right)\)
B = \(1+1-\frac{11}{27}\)
B = \(\frac{43}{27}\)
Mà 1/2 < 43/27 (Vì 1/2 < 1; 43/27 > 1)
=> A < B
Giải
\(A=\frac{-2}{11}+\frac{6}{7}+\frac{1}{2}+\frac{-9}{11}+\frac{1}{7}\)
\(\Leftrightarrow A=\left(\frac{-2}{11}+\frac{-9}{11}\right)+\left(\frac{6}{7}+\frac{1}{7}\right)+\frac{1}{2}\)
\(\Leftrightarrow A=\frac{-11}{11}+\frac{7}{7}+\frac{1}{2}\)
\(\Leftrightarrow A=-1+1+\frac{1}{2}\)
\(\Leftrightarrow A=\frac{1}{2}< 1\left(1\right)\)
\(B=\left(\frac{9}{16}+\frac{8}{27}\right)+\left(1+\frac{7}{16}+\frac{-19}{27}\right)\)
\(\Leftrightarrow B=\left(\frac{9}{16}+\frac{7}{16}\right)+\left(\frac{8}{27}+\frac{-19}{27}\right)+1\)
\(\Leftrightarrow B=\frac{16}{16}+\frac{-11}{27}+1\)
\(\Leftrightarrow B=1+\frac{-11}{27}+1\)
\(\Leftrightarrow B=2+\frac{-11}{27}\)
\(\Leftrightarrow B=\frac{43}{27}\)\(>1\left(2\right)\)
Từ (1) và (2) suy ra A < B
\(A=\frac{1}{1\cdot2}+\frac{2}{2\cdot4}+\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+...+\frac{10}{46\cdot56}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{56}\)
\(A=1-\frac{1}{56}\)
\(A=\frac{55}{56}\)
\(B=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{23\cdot27}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)
\(B=\frac{1}{3}-\frac{1}{27}\)
\(B=\frac{8}{27}\)
\(C=\frac{4}{3\cdot6}+\frac{4}{6\cdot9}+\frac{4}{9\cdot12}+...+\frac{4}{99\cdot102}\)
\(C=\frac{4}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{99\cdot102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\cdot\frac{33}{102}\)
\(C=\frac{22}{51}\)
\(E=\frac{1}{2\times9}+\frac{1}{9\times7}+\frac{1}{7\times19}+...+\frac{1}{252\times509}\)
\(E=\frac{2}{4\times9}+\frac{2}{9\times14}+\frac{2}{14\times19}+...+\frac{2}{504\times509}\)
\(E=\frac{2}{5}\times\left(\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{504\times509}\right)\)
\(E=\frac{2}{5}\times\left(\frac{9-4}{4\times9}+\frac{14-9}{9\times14}+\frac{19-14}{14\times19}+...+\frac{509-504}{504\times509}\right)\)
\(E=\frac{2}{5}\times\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(E=\frac{2}{5}\times\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(E=\frac{101}{1018}\)