Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
\(=\sqrt{75}-\sqrt{\frac{16}{3}}+\frac{9}{2}\sqrt{\frac{8}{3}}+2\sqrt{27}\)
\(=5\sqrt{3}-\frac{4}{\sqrt{3}}+3\sqrt{6}+6\sqrt{3}\)
\(=-\frac{4}{\sqrt{3}}+5\sqrt{3}+3\sqrt{6}+6\sqrt{3}\)
\(=-\frac{4}{\sqrt{3}}+11\sqrt{3}+3\sqrt{6}\)
\(=-\frac{4\sqrt{3}}{3}+11\sqrt{3}+3\sqrt{6}\)
b) \(\sqrt{48}-\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)
\(=\sqrt{48}-\sqrt{\frac{16}{3}}+2\sqrt{75}-5\sqrt{\frac{4}{3}}\)
\(=4\sqrt{3}-\frac{4}{\sqrt{3}}+10\sqrt{3}-\frac{10}{\sqrt{3}}\)
\(=-\frac{4}{\sqrt{3}}-\frac{10}{\sqrt{3}}+4\sqrt{3}+10\sqrt{3}\)
\(=-\frac{14\sqrt{3}}{3}+4\sqrt{3}+10\sqrt{3}\)
\(=-\frac{14\sqrt{3}}{3}+14\sqrt{3}\)
c)\(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)
\(=27+12\sqrt{5}+12\sqrt{5}\)
\(=27+24\sqrt{5}\)
d)\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\sqrt{6}+2-\sqrt{3}-\sqrt{2}\)
e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4\)
\(=4+2\sqrt{3}-2\sqrt{3}+4\)
= 8
f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{14}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
= 14
a) \(2\sqrt{2}.\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(=2\sqrt{2}.\left(\sqrt{3}-2\right)+9+4\sqrt{2}-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}\)
= 9 (đpcm)
b) \(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
\(=\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2^{\frac{1}{2}}\left(\sqrt{2}-1\right)}\)
\(=\sqrt{2\left(\sqrt{2}-1\right)}\) (đpcm)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
1) Ta có: \(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\cdot\sqrt{6}-\left(\frac{5}{2}\sqrt{2}+12\right)\)
\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{25}{4}\cdot2}+12\right)\)
\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{50}{4}}+12\right)\)
\(=-12\sqrt{2}+12-\frac{5\sqrt{2}}{2}-12\)
\(=\frac{-24\sqrt{2}-5\sqrt{2}}{2}\)
\(=\frac{-29\sqrt{2}}{2}\)
2) Ta có: \(\frac{26}{2\sqrt{3}+5}-\frac{4}{\sqrt{3}-2}\)
\(=\frac{26\left(5-2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}+\frac{4}{2-\sqrt{3}}\)
\(=\frac{26\left(5-2\sqrt{3}\right)}{25-12}+\frac{4\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=2\left(5-2\sqrt{3}\right)+4\left(2+\sqrt{3}\right)\)
\(=10-4\sqrt{3}+8+4\sqrt{3}\)
\(=18\)
3) ĐK để phương trình có nghiệm là: x≥0
Ta có: \(\sqrt{x^2-6x+9}=2x\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x\)
\(\Leftrightarrow\left|x-3\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x\\x-3=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3-2x=0\\x-3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x-3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=3\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={1}
4) ĐK để phương trình có nghiệm là: \(x\ge\frac{1}{2}\)
Ta có: \(\sqrt{4x^2+1}=2x-1\)
\(\Leftrightarrow\left(\sqrt{4x^2+1}\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow4x^2+1=4x^2-4x+1\)
\(\Leftrightarrow4x^2+1-4x^2+4x-1=0\)
\(\Leftrightarrow4x=0\)
hay x=0(loại)
Vậy: S=∅
a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)
f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)
k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0
a)\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}=5\sqrt{3}-\frac{\sqrt{15}}{3}+3\sqrt{3}+6\sqrt{3}=14\sqrt{3}-\frac{\sqrt{15}}{3}\)
b) \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}=4\sqrt{3}+\frac{\sqrt{15}}{3}+10\sqrt{3}-\frac{5\sqrt{3}}{3}=\frac{12\sqrt{3}+30\sqrt{3}-5\sqrt{3}}{3}+\frac{\sqrt{15}}{3}=\frac{37\sqrt{3}+\sqrt{15}}{3}\)
c) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=\left[\left(\sqrt{15}\right)^2+4\sqrt{45}+\left(2\sqrt{3}\right)^2\right]+12\sqrt{5}=15+12\sqrt{5}+12+12\sqrt{5}=27+24\sqrt{5}\)
d) \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{18}-\sqrt{12}+\sqrt{6}-2\sqrt{2}=3\sqrt{2}-2\sqrt{3}+\sqrt{6}-2\sqrt{2}=\sqrt{2}-2\sqrt{3}+\sqrt{6}\)
e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=\left(\sqrt{3}\right)^2+2\sqrt{3}+1-2\sqrt{3}+4=3+2\sqrt{3}+1-2\sqrt{3}+4=8\)
f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)
g) \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}=\left(\frac{\sqrt{5}+2-\sqrt{5}+2+5-2}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\right)\frac{1}{3+2\sqrt{2}}=\frac{7}{3}.\frac{1}{3+2\sqrt{2}}=\frac{7}{9+6\sqrt{2}}\)
bài 1:
a:\(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{\left(1+\sqrt{3}\right)^2}\)
=\(\sqrt{3}-2+1+\sqrt{3}\)
=\(2\sqrt{3}-1\)
b; dài quá mink lười làm thông cảm
bài 2:
\(\sqrt{x^2-2x+1}=7\)
=>\(\sqrt{\left(x-1\right)^2}=7 \)
=>\(\orbr{\begin{cases}x-1=7\\x-1=-7\end{cases}}\)
=>\(\orbr{\begin{cases}x=8\\x=-6\end{cases}}\)
b: \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
=>\(\sqrt{4\left(x-5\right)}-9\sqrt{x-5}=\sqrt{1-x}\)
\(=2\sqrt{x-5}-9\sqrt{x-5}=\sqrt{1-x}\)
=>\(-7\sqrt{x-5}=\sqrt{1-x}\)
=\(-7.\left(x-5\right)=1-x\)
=>\(-7x+35=1-x\)
=>\(-7x+x=1-35\)
=>\(-6x=-34\)
=>\(x\approx5.667\)
mink sợ câu b bài 2 sai đó bạn
1 a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
= \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
= \(|2-\sqrt{3}|+|1+\sqrt{3}|\)
= \(2-\sqrt{3}+1+\sqrt{3}\)
= \(2+1\)= \(3\)
b) \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{6}{3^2}}-4\sqrt{\frac{6}{2^2}}\right)\cdot\left(3\sqrt{\frac{6}{3^2}}-\sqrt{6}\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\right)\cdot\left(\frac{3}{3}\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\right)\cdot\left(\sqrt{6}\left(1-\sqrt{2}-1\right)\right)\)
= \(\sqrt{6}\frac{1}{6}\cdot\sqrt{6}\left(-\sqrt{2}\right)\)
= \(\sqrt{6}^2\left(\frac{-\sqrt{2}}{6}\right)\)
= \(6\frac{-\sqrt{2}}{6}\)=\(-\sqrt{2}\)
2 a) \(\sqrt{x^2-2x+1}=7\)
<=> \(\sqrt{x^2-2x\cdot1+1^2}=7\)
<=> \(\sqrt{\left(x-1\right)^2}=7\)
<=> \(|x-1|=7\)
Nếu \(x-1>=0\)=>\(x>=1\)
=> \(|x-1|=x-1\)
\(x-1=7\)<=>\(x=8\)(thỏa)
Nếu \(x-1< 0\)=>\(x< 1\)
=> \(|x-1|=-\left(x-1\right)=1-x\)
\(1-x=7\)<=>\(-x=6\)<=> \(x=-6\)(thỏa)
Vậy x=8 hoặc x=-6
b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
<=> \(\sqrt{4\left(x-5\right)}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)
<=> \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)
<=> \(\sqrt{x-5}=\sqrt{1-x}\)
ĐK \(x-5>=0\)<=> \(x=5\)
\(1-x\)<=> \(-x=-1\)<=> \(x=1\)
Ta có \(\sqrt{x-5}=\sqrt{1-x}\)
<=> \(\left(\sqrt{x-5}\right)^2=\left(\sqrt{1-x}\right)^2\)
<=> \(x-5=1-x\)
<=> \(x-x=1+5\)
<=> \(0x=6\)(vô nghiệm)
Vậy phương trình vô nghiệm
Kết bạn với mình nha :)