\(\frac{10.x+765.y}{x-2009.y}\) biết
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

a. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

13 tháng 5 2020

câu c mình ko hỉu mấy bạn ơi

13 tháng 5 2020

Câu c bạn chỉ thay x + y = 0 vào M thoy mờ

Câu a mình lm sai :))

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)

 

4 tháng 4 2020

PT đã cho suy ra thành

\(\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)\)

\(+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)

\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+\left(tương\right)Tựnha=0\)

Do

\(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\)

máy cái bạn tự suy ra cx thế

\(=>x^{2010}=y^{2010}=z^{2010}=t^{2010}=0=>x=y=z=t=0\)

ta có 

\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}=0+0+0+0=0\)

4 tháng 4 2020

Ta có:

\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)

<=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)

\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)=0\)(1)

Lại có: \(x^{2010};y^{2010};z^{2010};t^{2010}\ge0;\forall x,y,z,t\)

và với mọi a; b ; c ; d khác 0 có:

\(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)

\(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);

\(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);

\(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)

=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)

\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

Như vậy (1) xảy ra<=> \(x^{2010}=y^{2010}=z^{2010}=t^{2010}=0\)

<=> x = y = z = t = 0

Thay vào T ta có : T = 0

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

4 tháng 4 2020

Câu hỏi của Lê Xuân Phú - Toán lớp 7 - Học toán với OnlineMath

9 tháng 4 2020

cảm ơn bạn nhiều, bạn làm gần hết bài rồi

9 tháng 4 2020

Không có gì đâu bạn